钙钛矿-硅叠层太阳能电池的实验室效率已接近35%,但其商业化进程受限于两大挑战:工艺兼容性与器件不稳定性。传统钙钛矿溶液加工方法仅适用于定制化亚微米级纹理硅片,难以实现规模化生产;同时叠层结构中的宽带隙钙钛矿降解加速,工作寿命通常不足2000小时。本研究新加坡国立大学侯毅等人通过引入功能性分子3,3,3-三氟丙基-三甲氧基硅烷,增强有机组分与基底的相互作用,实现了在工业级微米级金字塔纹理硅上均衡吸附钙钛矿前驱体。
2025年12月18日新加坡国立大学侯毅于Science刊发在绒面硅上实现最佳钙钛矿蒸汽分配实现高稳定性叠层太阳能电池的研究成果,在绒面硅衬底上实现平衡的蒸汽分配是形成高质量钙钛矿薄膜并确保器件性能的先决条件。研究表明,有机物种(例如FA+)与金字塔形织构表面的相互作用较弱,导致吸附不足和相杂质的出现
背景介绍三结太阳能电池是突破单结电池效率极限的核心方向,超宽禁带钙钛矿作为顶层吸收体的瓶颈制约其发展。目前钙钛矿/硅双结电池效率已达33.7%,但三结电池的关键瓶颈是缺乏高性能UWBG顶层电池。虚线框区域为设备的检测间隙。a,不含氰酸盐和含5%氰酸盐的钙钛矿晶体结构计算结果。a,不同浓度溴和氰酸盐的VOC对比。总结与展望首次证实OCN可稳定嵌入钙钛矿晶格,利用其与Br的晶格匹配性,诱导适度畸变,同步优化元素分布与缺陷抑制。
武汉纺织大学陶晨&方国家&新加坡国立大学侯毅发现氟掺杂氧化锡透明导电衬底在光照、高温和电偏压等操作应力下会发生离子扩散,这一隐藏的不稳定性问题严重制约了钙钛矿太阳能电池的长期耐久性。这一简单而高效的方法显著增强了FTO的结构稳定性,为制备高效稳定的钙钛矿太阳能电池提供了新思路。图5:YO界面层提升器件性能与稳定性的实验验证图5展示了引入YO界面层后钙钛矿太阳能电池性能的显著提升。
研究意义提出自引导晶体生长新机制:通过中间相实现晶面定向控制,为蒸发法制备高质量钙钛矿提供新路径。结论展望本研究通过中间相演化诱导的自引导晶体生长策略,成功实现了高效、稳定、高度取向的蒸发宽带隙钙钛矿太阳电池,效率突破21%,推算寿命达7万小时,并成功应用于效率超过29%的钙钛矿-硅叠层器件。
高效的宽禁带钙钛矿太阳能电池将叠层效率提高到34.9%,加强了下一代光伏电池的前景。然而,它们的商业应用受到宽带隙钙钛矿稳定性问题的阻碍,特别是在高温最大功率点跟踪条件下。鉴于此,2025年10月22日北京工业大学卢岳&新加坡国立大学侯毅于NatureMaterials刊发稳定定向蒸发宽带隙钙钛矿太阳能电池的中间相演化的研究成果,报道了~1.7eV宽带隙钙钛矿通过中间相演化的稳定性,实现了自导向晶体生长模式。
高效宽带隙钙钛矿太阳能电池已将叠层器件效率提升至34.9%,展现出下一代光伏技术的巨大潜力。本研究北京工业大学卢岳和新加坡国立大学侯毅等人通过中间相演化实现了~1.7eV宽带隙钙钛矿的稳定化,并引导其进入自引导晶体生长模式。在沉积初期形成的CsIBr中间相能够引导多晶薄膜沿特定取向生长。突破性热稳定性与寿命:器件在110°C高温下稳定运行超过500小时,室温MPPT寿命预计达7万小时,为宽带隙钙钛矿中最高之一,满足商业化寿命要求。
采用该方法,PTAA基锡铅钙钛矿太阳能电池实现了22.67%的纪录效率。进一步应用于全钙钛矿叠层电池时,PTAAHTL可实现完全覆盖的中间复合层,最终使叠层器件在模拟太阳光下最大功率点运行500小时后仍保持96%的效率,效率达28.14%。本研究突出了非退火方法的低成本、通用性和环保特性,并为PTAA基全钙钛矿叠层太阳能电池的性能提升提供了重要路径。
针对多结应用设计的带隙工程钙钛矿材料在成膜过程中易面临结晶质量差的挑战,并在暴露环境下发生限制PCE的相分离现象。钙钛矿基TJSCs在实际辐照条件下的年最大发电量凸显了多结电池广阔的应用潜力。图4:硅基底部太阳能电池。图5:基于钙钛矿的多结太阳能电池的能量产出评估。
基于此,新加坡国立大学MingyangWei、SoMinPark和侯毅教授团队的最新综述系统性地总结了钙钛矿基叠层太阳能电池领域的前沿进展与技术挑战。钙钛矿/硅叠层电池效率达34.6%,全钙钛矿叠层效率突破30.1%,展现了轻量化、低成本的优势。