盒是集成组件、逆变器、并网柜等部件的并网型户用光伏系统。转换效率记录4月,p型多晶硅组件效率创新纪录达19.14%;11月,156156mm2大面积P型多晶硅太阳电池光电转换率创世界纪录达21.25%;12月,156156mm2大面积P型单晶硅太阳电池光电转换效率创世界纪录达22.13%。
原因主要为人为操作不规范导致的,1)人为的擦片破坏Si3N4膜面,使Si3N4钝化效果失效;2)绒面凸起部分在人为摩擦过程中极易受损,使电池片p型裸露,印刷后直接与金属电极导通发生短路;3)即使擦片后
流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间,P-N结两端将建立起稳定的电势差Voc(P区为正,N区为负)。如果将外电路短路,则外电路中就有与入射光能量成正比的光电流
过程中形成玻璃态造成的大面积漏电。
造成擦片漏电的原因主要为人为操作不规范导致的,1)人为的擦片破坏Si3N4膜面,使Si3N4钝化效果失效;2)绒面凸起部分在人为摩擦过程中极易受损,使电池片p型
、晶体硅太阳电池工作原理
如图1所示,当处于开路的情况下,当光生电流和正向电流相等的时候,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间,P-N结两端将建
那个点,就需要MPPT了!
一、最大功率点的条件
这个问题说起来又有一点复杂了!太阳能电池组件,有内电阻和外电阻之分。当某一刻内电阻和外电阻相等时,此刻电池组件就工作在最大功率点了。
P=UI
有一下几种:恒电压跟踪法(Constant Voltage Tracking 简称CVT)、干扰观察法(Perturbation And Observation method简称P&O)、增量电导
项目对于高效产品的需求更为迫切。目前多晶电池最高转换效率达到18%,已接近19%的理论值,而目前主流P型单晶电池转换效率为19%-19.5%,距离22%的理论转换效率还有较大提升空间,主流N型单晶电池的
半导体和金属薄膜之间的非欧姆接触,影响电池效率。近日,北京大学深圳研究生院新材料学院在教授潘锋指导,博士后张明建和研究生林钦贤等人及团队师生共同合作,发现了新型p型Cu9S5化合物具有良好的导电性,并将
,增长缓慢。 而P型单晶目前转换效率在19.5%-20.5%,1年内将突破21.5%,N型单晶转换效率在22%-25%,N型理论上甚至可以达到30%的高效率。目前P型单晶在性价比方面已经超越多晶,可以预见不远的将来随着成本迫近甚至达到持平,多晶有望大面积被单晶取代.
PET两面通过交联剂反应制作复合膜或EVA膜。按材料不同分类,背板可分为FPF(以TPT为代表)、KPK、FPE(以TPE为代表)、KPE及多层PET背板、TAPE(T层和P层之间加入铝层)、TFB
涂在PET上,是PET类背板发展的两个主要方向。从成本看,涂膜成本比覆膜的要低很多,且氟膜技术主要被国外企业垄断,在光伏产品利润率持续下降的情况下,涂膜型背板产品的发展是光伏背板的必由之路。但涂膜背板在粘结性、稳定性方面仍需持续改善。背板的最终趋势应该是找到一种耐候性比较好的材料代替PET类背板。
差距正在快速缩小,而单晶转换效率优势则不断扩大,多晶在达到18-19%的转换效率后边际效应开始显现,增长缓慢。 而P型单晶目前转换效率在19.5%-20.5%,1年内将突破21.5%,N型单晶
,在PET两面通过交联剂反应制作复合膜或EVA膜。按材料不同分类,背板可分为FPF(以TPT为代表)、KPK、FPE(以TPE为代表)、KPE及多层PET背板、TAPE(T层和P层之间加入铝层)、TFB
要低很多,且氟膜技术主要被国外企业垄断,在光伏产品利润率持续下降的情况下,涂膜型背板产品的发展是光伏背板的必由之路。但涂膜背板在粘结性、稳定性方面仍需持续改善。背板的最终趋势应该是找到一种耐候性比较好的材料代替PET类背板。 (扫二维码,可分享至微信朋友圈)