发射极、背部钝化、点接触和硼背场 (BSF) 电池。此外,霍尼韦尔的掺杂剂将使 n 型硅基材得到广泛的应用,代替当前占主导地位的 p 型硅,从而消除 p 型硅光致退化效应带来的不良影响。有很多既经济又
,对于N 型发射区的非平衡载流子具有很强的吸引力,使得少数载流子发生复合作用,从而减少电流。因此需要使用一些原子或分子将这些表面的悬挂键饱和。实验发现,含氢的SiNx膜对于硅表面具有很强的钝化
中科院电工研究所 王文静
一 引言
为了降低晶体硅太阳电池的效率,通常需要减少太阳电池正表面的反射,还需要对晶体硅表面进行钝化处理,以降低表面缺陷对于少数载流子的复合作用。
硅的
高校和专业机构展开了紧密深层次的合作研究,包括杜邦中国公司、上海交通大学太阳能研究所、荷兰 ECN 和加拿大多伦多大学等。其中与荷兰 ECN 的合作开发将集中在高效电池的研发方向上,包括 N 型电池和
第三个时期。这个时期的主要特征是把表面钝化技术、降低接触复合效应、后处理提高载流子寿命、改进陷光效应引入到电他的制造工艺中。以各种高效电池为代表,电池效率大幅度提高,商业化生产成本进一步降低,应用
接触 (9)制备电极 (10)钝化:晶粒间界的钝化和表面钝化 目前,几乎所有制备体单晶硅高效电池的实验室技术均已用在制备多晶硅薄膜太阳电池的工艺上,甚至还包括一些制备集成电路的方法和工艺
广泛应用于太阳电池窗口层,并作为n型层,与p型材料形成p-n结,从而构成太阳电池。因此它对太阳电池的特性有很大影响,特别是对电池转换效率有很大影响。 一般认为,窗口层对光激发载流子是死层,其
时期的主要特征是把表面钝化技术、降低接触复合效应、后处理提高载流子寿命、改进陷光效应引入到电他的制造工艺中。以各种高效电池为代表,电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大。 在
。常规太阳电池简单装置如图1所示。当N型和P型两种不同型号的半导体材料接触后,由于扩散和漂移作用,在界面处形成由P型指向N型的内建电场。当光照在太阳电池的表面后,能量大于禁带宽度的光子便激发出电子和空穴对
晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结成制作,生产技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及