钙钛矿材料因其优异的光电特性——如可调的直接带隙和长载流子扩散长度——成为叠层太阳能电池结构中理想的吸收层。在全钙钛矿叠层电池中,宽带隙与窄带隙子电池的集成能够更高效地利用太阳光谱,认证效率已高达30.1%。宽带隙钙钛矿易发生光致相分离和深能级缺陷形成,而窄带隙钙钛矿则易受Sn氧化和异步结晶缺陷的影响。因此,实现耐用的全钙钛矿叠层电池需全面理解影响宽窄带隙吸收层的降解机制。
本文华东师范大学方俊锋和付圣等人报道了一种通过胺阳离子的理性设计实现静电碘调控的策略,以提升PSCs的光热稳定性。此外,TBAI还能促进钙钛矿结晶并钝化缺陷,减少非辐射复合。多重功能协同提升性能:TBAI不仅有效抑制碘流失和电极腐蚀,还促进钙钛矿结晶、降低缺陷密度,提升载流子传输效率,最终实现26.23%的高效率。
为此,日本广岛大学ItaruOsaka团队设计并合成了一种结构简化、合成便捷的高效聚合物给体PTz3TE。通过引入改良合成复杂度指标进行量化评估,PTz3TE被证实是当前性价比最高的聚合物给体之一。该研究为OPVs的材料设计与商业化提供了重要借鉴。结论展望该团队通过精妙的分子与合成设计,成功打造了聚合物给体PTz3TE,实现了“高性能”与“易合成”的理想结合。
在卤化物钙钛矿研究领域中,缺陷辅助复合通常被视为一级复合过程,即复合速率与载流子浓度呈线性关系。文章亮点挑战传统认知:文章指出,浅缺陷在卤化物钙钛矿中可能主导非辐射复合过程,而非传统认为的深缺陷。浅缺陷的存在使得复合行为更接近二次方依赖,而非线性。理论与实验结合:通过结合第一性原理计算、SRH统计理论与瞬态/稳态光致发光数据,文章提供了浅缺陷对光致发光量子效率和衰减动力学的定量分析框架。
近年来,钙钛矿太阳能电池已成为可再生能源应用领域的一项变革性技术,但其大规模工业化仍受限于有毒有机溶剂的使用。从循环经济和绿色化学的角度出发,本研究大湾区大学于华、陕西师范大学任丽霞、刘生忠和翟鹏等人首次开发了一种使用醋酸铅作为铅源、绿色醇类作为溶剂来制备钙钛矿的方法。文章亮点开创性绿色溶剂体系:首次实现完全使用绿色醇类溶剂替代传统有毒溶剂溶解醋酸铅来制备钙钛矿,真正迈向环境友好型加工。
本研究香港理工大学严晋跃和刘俊威等人设计了一种湿敏光调控薄膜,将日间光调节与夜间湿度控制相结合,以实现建筑节能与隐私保护。其除湿与降温性能在连续300次循环中保持稳定,表现出优异的操作稳定性。此外,MRLR薄膜采用低成本、环保材料制备,具有可扩展的工艺和良好的可制造性。低成本与高应用潜力:制造成本仅13.82美元/平方米,投资回收期34天,全球建模显示年节能24.57%,减排18.88kg/,具备大规模推广价值。
尽管铵盐已成为提升钙钛矿太阳能电池性能的有效策略,但其烷基链和卤素离子在针对特定缺陷类型的优选机制尚不明确。结果显示,支链烷基铵盐比直链烷基盐表现出更优的钝化效果,且烷基链结构对器件性能的影响大于卤素离子。本研究提出了一种针对不同钙钛矿组成与制备环境中缺陷类型的铵盐靶向钝化策略。文章亮点总结1.支链烷基铵盐对VPbVPb和VFAVFA缺陷的钝化效果显著优于直链烷基盐,烷基链结构是影响钝化效果的关键因素。
本研究大连理工大学梁红伟、中国科学院杨孟锦、谢莉莎和葛子义等人将一种空间柔性多位点酰胺衍生物N-(叔丁基)-4-脲基苯甲酰胺引入钙钛矿中,不仅通过其空间柔性的C=O/N–H官能团与PVK相互作用钝化缺陷,还能通过与FA/MA形成氢键调控结晶过程,从而获得具有更大晶粒、更低残余张力和缺陷密度的高质量PVK薄膜。同时,NUNB能有效调控电荷传输行为,抑制陷阱辅助的非辐射复合,并提升钙钛矿太阳能电池的稳定性。
尽管小面积钙钛矿太阳能电池发展迅速,但大面积钙钛矿太阳能组件的性能限制阻碍了其商业化。可扩展制造过程中不可控的结晶动力学和复杂的环境因素对钙钛矿结晶调控提出了重大挑战,最终导致薄膜质量下降。此外,MAA减少空位缺陷的能力及其强还原性有效屏蔽了钙钛矿薄膜在环境空气中的水解和氧化,促进了高质量大面积钙钛矿薄膜的制备。
经过数十年持续研究,光电化学(PEC)水分解技术已实现超过10%的太阳能-氢能(STH)转换效率,跨过了早期商业化门槛。然而,要实现商业化,PEC系统需达到20%以上的STH效率,并具备长期稳定性和可扩展至实际面板尺寸的能力。尽管多光吸收体PEC系统可满足所需的电压和电流要求,但其结构复杂性和高昂制造成本限制了其广泛应用。