尽管其能量转换效率不断提升,但较差的光稳定性和抗疲劳性能阻碍了其实际应用与商业化进程。本文中山大学吴武强等人提出了一种新型“动态缺陷管理”策略,有效缓解了锡铅钙钛矿的光致降解,显著延长了器件寿命。茂金属插层与钙钛矿晶格中金属阳离子之间的强配位作用有效钝化了晶体缺陷,使缺陷密度降低34.5%,并抑制了非辐射复合。此外,茂金属及其对应阳离子可作为氧化还原对,提供动态、连续的修复机制,以循环方式恢复光诱导缺陷。
论文提出以生物质衍生的绿色溶剂γ- 戊内酯(GVL)为钙钛矿前驱体溶剂、乙酸正丁酯(BAc)为反溶剂,解决了传统有毒溶剂(DMF/DMSO)的环境危害与前驱体不稳定问题;GVL 基 FAPbI₃前驱体墨水可稳定储存一年,结合三丁基甲基碘化铵(TBMAI)形成的一维钙钛矿类似物(perovskitoid)钝化缺陷,最终小面积钙钛矿太阳能电池(PSCs)功率转换效率(PCE)达25.09%,12.25 cm²迷你模组经认证效率20.23%,为PSCs 规模化绿色制备提供关键方案。
钙钛矿太阳能电池是一种有前景的薄膜光伏器件,可实现高达27.3%的功率转换效率。由氧化镍和Me-4PACz组成的空穴传输层在这些器件中被广泛使用。此外,它们还可以用于与其他太阳能电池制备叠层电池。空穴传输层对PSCs极为重要,HTL自身的性能与稳定性具有重要意义。NiOx具有高透光率,其纳米颗粒稳定性优良。同时,使用NiOx的PSC仅保持初始PCE的62.9%。
钙钛矿太阳能电池的表面钝化虽可提升器件效率,但界面功能不完整仍对长期可靠性构成挑战。研究发现,SHF功能化的钙钛矿表面促进形成均匀致密的C层,有效阻隔离子扩散并稳定器件结构。基于该策略的p-i-n结构钙钛矿太阳能电池实现了27.02%的光电转换效率,1cm活性面积的器件效率也达25.95%。极端工况下近乎零衰减的稳定性:连续光照1200小时效率无衰减,高温与热循环下仍保持92%~94%初始效率,具备强工业适用性。
图3单结钙钛矿太阳能电池的光伏性能和稳定性4.4T钙钛矿/硅叠层太阳能电池的光伏性能和户外稳定性随后,将基于此策略制备的半透明钙钛矿太阳能电池与硅电池结合在一起构成四端叠层电池,作者实现了33.4%的效率,这是迄今为止报道的4T钙钛矿/硅叠层太阳能电池的最高效率。
离子迁移严重威胁钙钛矿发光二极管的稳定性。基于此,采用BCPO的PeLEDs实现了25.8%的最大外量子效率与13.4小时的T,EL寿命,是目前性能最优异的绿光PeLEDs之一。本工作通过分子结构设计与界面工程的协同策略,为实现高效、色稳定的PeLEDs开辟了新路径。
离子迁移严重威胁钙钛矿发光二极管的稳定性。基于此,采用BCPO的PeLEDs实现了25.8%的最大外量子效率与13.4小时的T,EL寿命,是目前性能最优异的绿光PeLEDs之一。本工作通过分子结构设计与界面工程的协同策略,为实现高效、色稳定的PeLEDs开辟了新路径。
动态网络能够在剪切诱导流动下实现钙钛矿胶体颗粒的均匀共沉积,产生高质量晶体薄膜,并提升光电性能。使用机械互锁网络掺杂的前驱体墨水制备的柔性钙钛矿太阳能电池表现出优异性能,小型器件实现创纪录的功率转换效率26.22%。柔性钙钛矿太阳能器件的光伏性能和运行稳定性。a、柔性钙钛矿太阳能电池的示意结构。这种晶体质量的改善不仅提升了器件性能,还显著增强了柔性钙钛矿太阳能电池的长期稳定性。
柔性钙钛矿太阳能电池可实现高效弯曲能量转换,推动下一代可穿戴设备发展。然而,从实验室规模原型向工业规模组件的转变,受限于印刷过程中钙钛矿胶体颗粒的不均匀沉积,导致功率转换效率下降。高效率与大面积兼容:实现小面积器件26.22%和大面积组件19.44%的认证效率,突破柔性钙钛矿光伏的尺寸限制。
论文概览实现均匀稳定的空穴传输层对大面积钙钛矿太阳能电池至关重要。这一系列创新成果为钙钛矿太阳能电池的界面工程提供了全新解决方案。商业应用的可扩展性和工作稳定性本研究通过一体化2PACz-NiOxHTL技术成功实现了钙钛矿太阳能组件的大面积制备。该技术通过NiOx合成过程中的一步法原位锚定,显著提升了界面结合力、薄膜均匀性和电荷传输性能,为钙钛矿太阳能电池的大面积制备提供了理想解决方案。