,对考生将来毕业之后的职业规划是十分有所裨益的。
一、从专业来看
光伏全产业链范围非常广,从最上游的金属硅、多晶硅、硅片、银浆、PET基模,到中游的光伏玻璃、电池片、EVA、背板、密封胶、边框
、风能、生物能、光伏等新能源。在光伏行业的应用主要为如何更高效的对光能进行开发利用,属于光伏产业链的应用端。
新能源科学与工程
2012年教育部将原有的风能与动力工程和新能源科学与工程统一
做了非常深入的研究。该研究所的研究表明采用氧化硅作为钝化层+多晶硅作为载流子选择性接触材料,是能取得潜在最高效率的组合。2016年,ISFH制备的N型POLO-IBC太阳能电池效率达到24.25
本文摘要
在晶体硅太阳能电池中,金属-半导体接触区域存在严重的复合,成为制约晶体硅太阳能电池效率发展的重要因素。隧穿氧化层钝化金属接触结构由一层超薄的隧穿氧化层和掺杂多晶硅层组成,可以显著降低金属
澳大利亚国立大学(Australian National University)的研究人员正在研究如何利用氢原子来改善钝化接触太阳能电池掺磷多晶硅(poly-si)薄膜的性能。
科学家们相信,在
掺磷多晶硅层中,氢原子可以被操纵用来提高钝化接触结构的质量,因而他们将氢原子应用于电池的表皮层,这一层的厚度比人类的头发薄1000倍,能发出非常独特的光。研究人员很快意识到,氢原子的存在极大地改变
中,铸造其实是传统的多晶制作方法。
其实现在的单、多晶之争就是直拉技术和铸造技术的竞争,而铸造单晶则是巧妙地将铸造技术的低成本、低能耗、大尺寸优势和单晶的高效率、高质量优势结合到了一起。浙江大学杨德
2010年左右,国内晶澳、昱辉、LDK、协鑫、天合等企业推出铸造单晶产品,但是到2013年左右,高效多晶产品兴起,铸造单晶已基本被工业界放弃。
在技术探索阶段,有的技术被推崇逐渐成为主流,有的方向被
,包括单晶硅、多晶硅太阳电池,无机半导体薄膜太阳电池、染料敏化太阳电池、钙钛矿太阳电池和有机/聚合物太阳电池。其中聚合物太阳电池的关键材料包括给体、受体和电极界面修饰层材料,光电转换过程包括吸光、激子扩散
高效聚合物太阳电池的关键。侧链工程是提高给体和受体材料光伏性能的有效手段。聚合物太阳电池到了可以向实际应用发展的阶段,降低光伏材料和器件制备的成本、研究和提高材料和器件的稳定性是将来聚合物太阳电池能否实现实际应用的关键。
当前,光伏产业所用的主体材料都是晶硅电池,光伏面板中主要以单晶硅电池和多晶硅电池为主。而第二代太阳能电池薄膜太阳能电池正在崛起,其特点是透光性好,而且质轻,是一种新型建筑材料,可以应用于居民屋顶
,薄膜太阳能组件在光电转化率上取得一系列突破,而价格却持续降低,方便更多普通民众的使用。目前,世界上至少有40个国家正在开展对下一代低成本、高效率的薄膜太阳能电池实用化的研究开发。
未来,薄膜太阳能
平均量产效率已达到20.1%,最高效率达到20.6%,再次实现了产业化多晶电池平均效率的突破。在多晶高效电池技术路线的选择上,协鑫集成以金刚线切割多晶硅片降低成本、增加多晶竞争优势,配合金刚线多晶硅片的
极上使用钝化电子选择n +型多晶硅氧化(POLO)触点,在正接触极上使用孔选择P+型POLO触点。
POLO触点的高选择性是实现高效率的一个关键因素,背部叉指模式使用了这种触点,能够最大限度地减少
哈梅林太阳能研究所(ISFH)和汉诺威莱布尼茨大学在一块经过特殊处理的叉指p型单晶硅片背面使用了多晶硅脱氧多晶硅氧化物触点工艺,实验室电池转换效率达到26.1%,创下记录。
ISFH主任Rolf
效率最高的电池。
该电池采用交错背接触结构(IBC),正负电极均采用多晶硅氧化层(POLO)技术实现钝化接触。普通双面电极的电池在使用钝化接触(包括HIT在内)时,虽然提高了钝化效果和电压,但由于钝化
层对光的吸收,电流有所损失,因此将钝化接触用在正面无遮挡的背接触设计中就成为了一个两全齐美的解决方案。日本钟化公司正是采用异质结背接触技术取得了目前单晶硅电池的世界最高效率。此次ISFH效率达到
集中于技术与效率。在单晶市占不断提升的情况下,应用金刚线切多晶硅片搭配黑硅技术是提升多晶产品竞争力的必由之路。未来,黑硅技术有望成为高效多晶量产的主流工艺路线,将为适用于黑硅技术的导电浆料带来巨大的
3月1日,工信部印发《光伏制造行业规范条件(2018年本)》,强调严格控制新上单纯扩大产能的光伏制造项目。在新建和改扩建企业及项目产品应满足的条件中,要求多晶硅电池和单晶硅电池的最低光电转换效率分别