。提高耐热性的关键是作为p型半导体材料采用了新开发的高分子材料PTzNTz(thiophene and thiazolothiazole)。在500小时的耐热性试验中没有劣化尾坂等人采用这种PTzNTz
开发出这项技术的是日本理化学研究所创发特性科学研究中心创发分子功能研发组高级研究员尾坂格等人。提高耐热性的关键是作为p型半导体材料采用了新开发的高分子材料PTzNTz(thiophene
科学研究中心创发分子功能研发组高级研究员尾坂格等人。提高耐热性的关键是作为p型半导体材料采用了新开发的高分子材料PTzNTz(thiophene and thiazolothiazole)。 在500
高分子材料研发,生产及销售的高新科技型企业。公司自主配置了先进的分析测试议器,高精度的生产设备和三十万级的净化标准车间。公司与著名科技专家级教授已成功开发了具有自发知识产权的高性能多氟型太阳电池背板
有机光伏电池。同时,通过改变受体的最高占据分子轨道(HOMO)和聚合物的最低未占据分子轨道含量(LUMO)之间的差异变化,也能提高太阳能电池的效率。 安装完整的光伏发电组件及其相关高分子材料包括:光伏组件
(HOMO)和聚合物的最低未占据分子轨道含量(LUMO)之间的差异变化,也能提高太阳能电池的效率。安装完整的光伏发电组件及其相关高分子材料包括:光伏组件(热塑性聚酯弹性体,PBT树脂,交联聚烯烃,PVC合金
分子轨道(HOMO)和聚合物的最低未占据分子轨道含量(LUMO)之间的差异变化,也能提高太阳能电池的效率。安装完整的光伏发电组件及其相关高分子材料包括:光伏组件(热塑性聚酯弹性体,PBT树脂,交联
。大力推广应用耐腐蚀、密封性好、保温节能的新型管材和型材,提高使用寿命和耐久性。支持生产和推广使用大口径、耐腐蚀、长寿命、低渗漏、免维护的高分子材料或复合材料管材、管件,支撑地下管廊建设。 (二十
管材和型材,提高使用寿命和耐久性。支持生产和推广使用大口径、耐腐蚀、长寿命、低渗漏、免维护的高分子材料或复合材料管材、管件,支撑地下管廊建设。(二十)推广环境友好型涂料、防水和密封材料。支持发展低挥发性
于1000V背板以及接线盒,目前来看,双玻在性能上优于单玻,但是短时间来看,无法完全取代背板型组件。 可靠性方面 1)耐候性能 :背板是高分子材料,在严酷的环境中容易老化