于储存信息的蓝光光盘上找到了适合管理光子的半随机纳米结构。研究者发现无论这些光盘上储存了什么信息,它们的结构都很适合吸收和操控整个阳光光谱的光线。为了验证这一点,研究者使用了一盘《警察故事3:超级警察》的
蓝光DVD碟片作为聚合物太阳能电池的压模。和没有进行图案压模的太阳电池相比,这样得到的半随机纳米结构太阳能电池表现出了更好地吸收整个阳光光谱的能力和光电转换效率。
因为蓝光光盘的制造已经大规模化
太阳能电池领域,一般使用的是有机无机复合的钙钛矿。钙钛矿一般是作为太阳能电池的吸收层来使用,在接受太阳光的照射以后,钙钛矿吸收了光子以后会产生电子-空穴对。电子带负电,而空穴可以看成是带正电。这些电子
太阳能电池通常直接沐浴在阳光下必然会出现升温情况,而在过热环境下会导致电池性能降低,这似乎陷入了死循环。太阳能研究专家花费数年时间终于找到了合理的解决方案,只需要将全新的超薄材质覆盖在传统太阳能电池
上方就能减少热量。这种新材质由硅石制成,兼具薄和个性图案的特性,在使用过程中允许让阳光直接穿过,尽可能的捕获更多阳光的同时也能够向外部传输热辐射,尽可能降低面板的温度,从而增加电池效率。
该项目由
包括太阳能光热、太阳能光伏电池、太阳能制氢等方式。其中,太阳能光伏发电技术可以直接将太阳光的能量转换成电能,可以实现与当前供电网的无缝连接,是最便捷的太阳能利用方式。
商用太阳能电池产品已经有超过
的价格还是偏高。开发出转换效率高、发电成本低的太阳能电池器件是人类一直追寻的目标。
近年来的研究发现,具有钙钛矿晶体结构的甲氨基卤化铅材料由于具有很高的光吸收系数、很长的载流子传输距离、非常少的缺陷
Ubiquitous Energy又对这项技术进行了完善,使其更加接近投入市场应用。 从科学角度讲,透明太阳能板其实是自相矛盾的。光伏太阳能电池是通过吸收光子(阳光)产生能量的,然后将其转换称电子(电力)。但如果
态金属,可允许空气从孔隙中流入电池。 太阳能电池在吸入空气时放电,呼出空气时充电 太阳能电池(SolarCell)是利用太阳光直接发电的光电半导体薄片,薄片吸收光能之时,电子脱离原子核束缚而被激发
其能够从多角度吸收阳光能量,并且大幅提高太阳能电池的储能效率。
新型纳米玻璃涂层具有独特的复合层次结构,材料内部结合了超细超薄的纳米管结构和蜂窝层状的纳米墙结构,在纳米墙结构高效吸收光线的同时
,纳米管结构能够吸收亚波长的能量。研究团队说,新材料较传统材料的能源转换效率提高了5.2~27.7%,效率提高率随光线角度不同而改变。除了大幅提高太阳能面板的效率,这种材料还拥有隔离灰尘和污染的特性。在使用六周后,仍能够维持原效率的98.8%。该研究结果已经发表在《美国化学会˙纳米》期刊上。
。
研究人员还研究了多大尺寸的硅柱会产生最佳的效果。发现当硅柱的高度和深度分别采取40微米和790微米时,产生电能的效率为13%,即13%的光被吸收可以转为电能。而在一个平面结构中,太阳能电池的效率接近6
%。
研究人员希望这项研究可以应用在其当下正在合作开发的太阳能转化燃料设备这一大型项目中,将阳光直接转换成燃料。关于硅柱的研究也意味着可产生氢气的表面区域有所增加。虽然生产成本可能会受到限制,但是这些
的话,可比传统的太阳能电池板吸收多2~3倍的阳光量,吸收光照的时间也可拉长。 科学家常借用昆虫的身体构造来改进太阳能电池,之前有斯坦福大学团队取材昆虫的复眼结构研发新钙钛矿太阳能电池,有美国国家实验室
俄罗斯国立核能研究大学莫斯科工程物理学院(MEPhI)的学者们,研制出一种制造量子点材料的新技术,有助于研发吸收广谱太阳光的便宜太阳能电池。
现行光电装置是基于硅的无机半导体材料,效率低,不能处理
全部光谱,且成本昂贵。
量子点即大小在几纳米的半导体晶体,改变其尺寸,可以轻易控制太阳能电池的性质,如扩大吸收光谱。量子点冷凝物生产是通过简单廉价方法进行的,但为了获得高质量的镀层,必须仔细