该方法支持在任意曲面上可控制备厚度可调的高效钙钛矿光电器件,并具备规模化生产潜力。喷涂钙钛矿太阳能电池效率突破25.5%,并首次在80%高湿度环境下稳定制备,效率仍达23.1%,展现出优异的工艺适应性与环境鲁棒性。
李亮教授团队在本文中指出:钙钛矿材料依托“高定制潜力、低定制成本”的独特优势,可通过构建面向应用的定制化器件架构充分释放其材料潜能,进而在客制化电子器件领域确立不可替代的地位。本文揭示了钙钛矿材料在功能定制化方向的不可替代地位,更为钙钛矿探测器从“性能对标替代”转向“应用牵引定制化”的商业化路线提供了清晰指引。
2025年12月18日新加坡国立大学侯毅于Science刊发在绒面硅上实现最佳钙钛矿蒸汽分配实现高稳定性叠层太阳能电池的研究成果,在绒面硅衬底上实现平衡的蒸汽分配是形成高质量钙钛矿薄膜并确保器件性能的先决条件。研究表明,有机物种(例如FA+)与金字塔形织构表面的相互作用较弱,导致吸附不足和相杂质的出现
然而,实际应用过程中,钙钛矿太阳电池在高温、电场等外界因素作用下,效率会发生衰减,其中反偏压下的稳定性问题尤为严峻,成为制约电池实用化的关键难题。该成果为解决钙钛矿电池反向偏压稳定性的瓶颈问题提供了一种新的思路,有力推动了钙钛矿太阳电池的实用化。
针对这一关键问题,研究团队构建了集成式原位光谱表征平台,实现连续光照下稳态PL信号与TRPL信号的同步采集,从而直接获取钙钛矿纳米晶薄膜在真实工作状态下的载流子复合动力学。研究结果表明,在连续光激发的工作条件下,钙钛矿纳米晶薄膜的复合动力学主要受载流子与缺陷态相互作用调控:随着激发功率持续增加,光生载流子逐步填充缺陷态,从而抑制非辐射复合通道,最终表现为发光效率与TRPL寿命同步增长的现象。
牛津大学的一位研究人员发现,透明导电电极可使钙钛矿-硅叠层太阳能电池效率降低超过2%,损失与电阻、光学效应和几何因子权衡有关。基于此,Bonilla提出了一个统一的光学-电气模型,考虑了双端钙钛矿-硅叠层太阳能电池设计中的这些因素。而叠层电池通常采用中间或者背TCEs,这进一步降低性能。据Bonilla称,这些损失与实验结果一致,显示在氧化铟锡沉积、抗反射涂层或原子层沉积屏障层中微调,直接导致先进叠层电池的性能可测量提升。
溶液法制备的钙钛矿薄膜的结晶演化对其性能和稳定性至关重要。然而,由于在退火过程中观察多晶团簇动力学存在实验上的挑战,全无机钙钛矿的结晶动力学仍知之甚少。结果表明,增强的双香豆素与钙钛矿前驱体的相互作用促进了DIC-Cs+(δ相)异质晶种的自发形成。这项工作提供了对团簇生长过程的直接原位研究,指导了利用异质晶种制备高质量全无机钙钛矿薄膜的方法。
理论计算表明,镧系离子掺杂在合金态中促进了相分离并促进离子迁移,而在相分离态中抑制离子迁移,形成“相钉扎”效应。该机制在合金态与分离相中形成了迁移势垒的相反趋势,同时驱动卤化物分离并在分离相中钉扎离子迁移。
铵基配体,无论是直接作为钝化剂还是以二维钙钛矿形式存在,一直是卤化物钙钛矿中最主要的缺陷钝化剂,对实现各类钙钛矿太阳能电池的最高效率做出了重要贡献。这一去质子化过程破坏了铵基与钙钛矿之间的相互作用,使钙钛矿重新暴露于光降解风险中。
近日,欧洲创新委员会(EIC)宣布向SUNPEROM项目提供近300万欧元资助,该项目聚焦钙钛矿叠层电池与碳转化技术融合创新,旨在直接利用太阳能和大气二氧化碳合成绿色甲醇,为可再生能源产业革新与碳中和目标实现提供新路径。项目实施周期为2025年11月至2029年10月。