年,随着BC、HJT 、BIPV、钙钛矿组件等新技术层出不穷,对胶膜企业提出了更高的技术要求和更强的研发创新能力,胶膜品类增加并呈现差异化、定制化趋势。各类胶膜特性如下:2024年,TOPCon
(PMDA)策略来设计底部界面并抑制相分离。多个重复膦酸基团在NiOx上形成的增强且均匀的锚定作用显著优化了底部界面,抑制了不利的界面反应,从而减轻了宽带隙钙钛矿的相分离。结果表明,PMDA修饰的宽带
隙钙钛矿太阳能电池(WBG PSCs)的功率转换效率(PCE)高于对照器件(19.84% vs
18.18%),同时具有更好的器件光稳定性(T80=1200小时 vs
500小时)。与窄带隙
导致功率转换效率的整体提高。分析还表明,并四苯中吸收的每个光子的峰值电荷产生效率约为138%,科学家们表示,这“轻松”超过了传统硅太阳能电池的量子效率极限。“这项技术将与硅-钙钛矿叠层等双结概念电池
竞争,”Baldo解释说。“将激子裂变与硅相结合避免了电流匹配限制,并且该方法保证了在不同照明下的稳健性和单结典型的简单性,它还有很长的路要走。最重要的是,我们需要提高效率并证明该技术可以在阳光
·极·隐·天·居·四款钙钛矿光伏组件产品。○极系列 柔性钙钛矿产品,搭载全自研微米级超薄柔性衬底技术。极致轻薄,厚度仅为蝉翼1/10,可任意弯折搓揉。功质比超普通光伏组件100倍。○隐系列 半透明钙钛矿
钙钛矿太阳能电池性能的关键在于有效抑制钙钛矿/C60界面的非辐射复合。本研究创新性地采用1,6-双(丙烯酰氧基)-2,2,3,3,4,4,5,5-八氟己烷(简称BA-8FH)作为钙钛矿/C60界面的多功能
近日,拉普拉斯(SH:688726)在接受投资者调研时表示,公司凭借自身的技术积累,积极布局TOPCon、XBC、HJT、钙钛矿以及叠层电池等不同技术所需的核心工艺设备。公司在研项目包含“钙钛矿核心
蔚山国立科学技术研究所(UNIST)、蔚山大学和群山国立大学的研究人员开发了一种多功能空穴选择性层(mHSL),旨在显着提高钙钛矿/有机叠层太阳能电池(POTSCs)的性能。据报道,这种薄膜材料能够
同时提高叠层太阳能电池的效率和耐用性。宽带隙钙钛矿电池结构示意图和多功能空穴选择层分子结构图片来源:Advanced Energy Materials (2025)叠层太阳能电池堆叠两种不同类型的电池
研究团队提出创新的双层界面钝化策略,成功将钙钛矿/硅串联太阳能电池的转换效率提升至33.89%的纪录新高,推动太阳能技术发展迈向新的里程碑。长久以来,钙钛矿与电子传输层界面处所发生的载流子复合问题
㎡。重点展示秦创原创新驱动平台成果、科技成果转化项目及专精特新企业技术突破。作为高新技术企业代表,中茂绿能科技携碲化镉(CdTe)、钙钛矿薄膜光伏组件两大创新成果亮相“科技创新展”,以创新技术诠释
理工大学(Politecnico di Milano)的研究人员使用一种将简单的化学添加剂TEMPO与快速红外固化工艺相结合的新方法设计了一种高效且稳定的钙钛矿太阳能电池。该方法通过使用2,2,6,6-四
甲基哌啶氧基(TEMPO)体钝化和快速光子退火生产了高性能、稳定的甲脒碘化铅(FAPI3)钙钛矿太阳能电池(PSCs)。该团队使用快速红外退火(FIRA)
制造了功率转换效率(PCE)超过20%的