钙钛矿材料因其优异的光电特性——如可调的直接带隙和长载流子扩散长度——成为叠层太阳能电池结构中理想的吸收层。在全钙钛矿叠层电池中,宽带隙与窄带隙子电池的集成能够更高效地利用太阳光谱,认证效率已高达30.1%。宽带隙钙钛矿易发生光致相分离和深能级缺陷形成,而窄带隙钙钛矿则易受Sn氧化和异步结晶缺陷的影响。因此,实现耐用的全钙钛矿叠层电池需全面理解影响宽窄带隙吸收层的降解机制。
减少钙钛矿/电子传输层界面的非辐射复合是实现高性能稳定钙钛矿/硅叠层太阳能电池的关键挑战。本研究分析了能量损失,并设计了双层钝化策略以提升叠层电池的性能与耐久性。实验结果表明,该双层钝化策略可精确调控钙钛矿能级排列、降低缺陷密度并抑制界面非辐射复合。采用AlO/PDAI处理的单片式钙钛矿/硅叠层太阳能电池,在使用基于QCELLSQ.ANTUM技术制备的工业硅底电池上,实现了31.6%的光电转换效率。
宽带隙钙钛矿在实现高效钙钛矿/硅叠层太阳能电池方面潜力巨大,然而钙钛矿/电子选择性接触界面的能量损失仍是限制其效率提升的关键瓶颈。更重要的是,该笼状阳离子可诱导形成面内取向的纯相准二维钙钛矿,并表现出显著铁电效应,通过提升表面功函数促进载流子分离与提取。
倒置钙钛矿太阳能电池因钙钛矿表面及功能层间的非辐射复合而面临性能限制。两者协同使钙钛矿准费米能级分裂均质提升约100mV。基于此,两端钙钛矿-硅叠层电池在1cm器件上实现认证开路电压2V,效率超过31%。该钝化策略具备良好扩展性,60cm活性面积的均质钝化器件获得认证效率28.9%。叠层器件高性能与稳定性兼顾:1cm钙钛矿-硅叠层电池认证效率达31.6%,开路电压突破2V,并在暗态氮气环境中展现良好稳定性,为大面积产业化提供可靠路径。
NiOx/自组装单分子层空穴传输双层结构已成为高性能倒置钙钛矿太阳能电池的首选架构。然而,在光热应力下,NiOx/钙钛矿界面发生的氧化还原反应会引发钙钛矿降解,严重制约了器件的长期稳定性。本文上海交通大学王言博和韩礼元等人通过在常用的咔唑类SAM中引入功能化烟酸衍生物,构建了共自组装结构。文章亮点:共自组装策略提升界面稳定性:通过引入6-HNA与6-MNA分子,有效抑制NiOx/钙钛矿界面的氧化还原反应,减少Ni、Pb和I等有害物种的生成。
本文浙江大学杭鹏杰和余学功等人提出了一种在二维钙钛矿中间层中引入n型调控的策略,通过将SbCl掺入PEAI基二维钙钛矿中,实现了2D层的n型掺杂,显著提升了电子密度,构建了增强的场效应以优化钙钛矿/C界面的钝化效果。叠层效率突破33%:单结宽带隙钙钛矿电池效率达23.20%,钙钛矿-硅叠层电池效率达33.10%,是目前报道的最高效率之一。
近日,商用大尺寸钙钛矿叠层太阳电池效率迎来了技术突破。成都高新区企业成都晶信明能光伏科技有限公司自主研发的210mm半片商用大尺寸钙钛矿/晶硅两端叠层太阳电池,获中国福建省计量科学研究院权威认证,光电转换效率突破至30.54%(正扫)、31.27%(反扫),达到国际领先水平。2025年,其获批的钙钛矿—晶硅叠层太阳电池扩建项目落地于成都高新西区,预计将进一步推动叠层电池组件技术开发,推动该技术商业化应用落地。
据报道,印度跨国企业集团RPSG集团计划在北方邦建立一个大型太阳能电池制造中心。该集团拟投资300亿印度卢比,将建立一个3吉瓦的太阳能电池制造设施以及一个60MW的自备太阳能和储能系统。该设施将专注于先进的隧道氧化物钝化接触和叠层钙钛矿太阳能技术。该集团已在亚穆纳高速公路工业发展局的8D区获得了100英亩的土地。SAELIndustriesLtd正在计划在大诺伊达建造一座5吉瓦的集成太阳能电池和组件设施。
9月22日,浙江晟霖益嘉科技有限公司再添中标新成果,中标柔性钙钛矿头部企业大面积电子传输层蒸镀设备项目。
IMDEANanoscience(马德里)、EPFL、蔚山科技大学和其他合作者的研究人员最近开发了一种钙钛矿太阳能电池,其认证效率为25.2%,接近目前26.7%的世界纪录。还制造了一个25平方厘米的微型模块,在1,100小时后仍有22.1%的效率,保持了85%以上的初始性能—对于放大的钙钛矿器件来说,这是一个令人印象深刻的结果。这标志着向商业化迈出了一步,因为新材料克服了长期存在的效率损失和不稳定性等问题,这些问题限制了钙钛矿的部署。