钙钛矿太阳能电池通常包含沉积在钙钛矿活性层每一侧上的电子和空穴传输材料。到目前为止,只有两种有机空穴传输材料(PTAA和spiro-OmetaD)在这些太阳能电池中实现了最先进的性能。然而,这些材料
据《科技日报》消息:英国《自然·能源》杂志近日发表的最新研究,一组国际联合团队报告成功制造了钙钛矿/硅双层单片电池。在室外条件下,双面串联太阳能电池实现超出任何商用硅太阳能电池板的效率。这也是首次
通过实验清晰证明了双面串联装置效能优越的证据。基于带隙工程的高效钙钛矿/硅双层单片太阳能电池示意图。图片来源:《自然·能源》在线版钙钛矿太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的
近10多年来,钙钛矿半导体材料的发现和发展对光电转换及应用产生了明显的积极影响,目前已在晶体管、探测器、传感器、太阳能电池、光通讯、发光显示、激光器等应用领域表现出巨大潜力。其中,钙钛矿太阳能
晶硅之后的主流电池钙钛矿电池转换效率提升迅速。2009 年,首个钙钛矿太阳能电池被发明,而转 换效率仅为 3.8%。但经历各国实验室重视研发 14 年后,其效率就被提升至 26%。而晶硅电池转换效率
,据协鑫科技此前披露,公司大尺寸钙钛矿组件(1m×2m)转换效率已超过16%,预计2023年底前可达18%。今年4月,七国集团气候、能源和环境部长会议发布《联合声明》称,将“推进钙钛矿太阳能电池等领域
中科院电工所质量检测中心。据悉,南京奥联光能科技有限公司自研的钙钛矿太阳能电池实验室于2023年4月25日建设完成,包括两条实验线(一条工艺实验线、一条应用实验线)全部设备的设计、制造加工、安装、工艺
调试并投入研发实验使用,依托钙钛矿太阳能电池实验室可研制制作尺寸不大于120mm×120mm的钙钛矿电池器件。此前,2023年2月27日,南京奥联光能科技有限公司与武汉理工大学签署协议
苯基-C61-丁酸甲酯(PCBM)仍然是反式钙钛矿太阳能电池中最常用的电子传输层。然而其电性能和钝化能力不足限制了器件的性能。鉴于此,2023年9月15日中国科学院青岛能源所崔光磊&逄淑平于AEM
刊发基于N掺杂PCBM的反式钙钛矿太阳能电池VOC超过1.2V:界面能量对准和协同钝化的研究成果,在PCBM中引入适量的n型聚合物N2200可以同时增强PCBM的电性能并钝化分布在钙钛矿表面的缺陷
、国家能源局发布《关于促进新时代新能源高质量发展的实施方案》,提出到 2030
年,风电、太阳能发电总装机容量达到 12 亿 kW 以上,加快构建清洁低碳、安全高效的能源体系 。2022 年
6月
占比超过 50%,风能和太阳能发电量实现翻倍 。此外,2022 年 1—6 月期间,国家发展和改革委员会、工业和信息化部、财政部、住房和城乡建设部、国家能源局等政府机构共出台 50
多项政策,提出
由于钙钛矿层的缺陷,机械耐久性和长期运行稳定性是柔性钙钛矿太阳能电池(f-PSC)商业化的关键因素。鉴于此,2023年9月13日宁波材料所李伟&葛子义于EES刊发分子偶极子工程辅助应变释放,用于机械
钙钛矿太阳能电池因其吸引人的特性而成为有前途的可再生能源器件。然而,它们在功率转换效率和长期稳定性方面都面临挑战。钙钛矿太阳能电池中存在的表面缺陷是实现高效率和稳定性的重大障碍,因为这些缺陷会导致非