基于P3HT空穴传输层的钙钛矿太阳能电池最高效率24.6%

来源:钙钛矿太阳能电池发布时间:2023-09-22 10:42:53

钙钛矿太阳能电池通常包含沉积在钙钛矿活性层每一侧上的电子和空穴传输材料。到目前为止,只有两种有机空穴传输材料(PTAA和spiro-OmetaD)在这些太阳能电池中实现了最先进的性能。然而,这些材料在商业化方面存在一些缺点,包括成本高、需要引发钙钛矿层降解的吸湿性掺杂剂以及沉积工艺的限制。P3HT是一种替代空穴传输材料,具有优异的光电性能、低成本且易于制造,但迄今为止使用P3HT的钙钛矿太阳能电池的效率仅达到16%左右。鉴于此,2019年3月27日韩国化学技术研究院Jun Hong Noh&Jangwon Seo于Nature刊发使用P3HT的高效、稳定和可扩展的钙钛矿太阳能电池的研究成果,提出了一种高效钙钛矿太阳能电池的器件架构,该电池使用P3HT作为空穴传输材料,不含任何掺杂剂。通过正己基三甲基溴化铵在钙钛矿表面的原位反应,在窄带隙光吸收层的顶部形成一薄层宽带隙卤化物钙钛矿。器件经认证的电源转换效率为22.7%,滞后为±0.51%;无需封装,在85%相对湿度下表现出良好的稳定性;封装后,在室温下 1-Sun 光照下可长期运行 1,370 小时,保持初始效率的95%。

卤化物钙钛矿太阳能电池通过表面处理减少了钙钛矿和空穴传输层之间界面的复合损失,显示出了性能的飞跃。然而,就生产成本而言,诸如旋涂或退火之类的附加表面处理工艺对于商业化而言是不理想的。此外,常用的有机空穴传输材料如spiro-OmetaD和PTAA与吸湿添加剂一起使用,会降低钙钛矿太阳能电池的长期稳定性并阻碍其商业化。鉴于此,2023年3月2日高丽大学Eui Hyuk Jung和Jun Hong Noh于EES刊发无掺杂P3HT钙钛矿太阳能电池的自发界面工程效率超过24%的研究成果,报告了一种有效的界面工程策略,即直接将乙酰丙酮镓(III) (Ga(acac)3)掺入 空穴传输材料中,无需后续工艺和吸湿性掺杂剂。掺入的Ga(acac)3自发地与钙钛矿层表面相互作用,从而减少各种有机空穴传输材料的界面复合损失。特别是,通过在P3HT中应用Ga(acac)3,钙钛矿太阳能电池的功率转换效率显著提高,从控制器件的17.7%提高到21.8%。Ga(acac)3-器件还在室温下85%相对湿度下表现出优异的湿度稳定性,在没有任何封装的情况下可保持2000小时,保持完整的初始性能。掺入的Ga(acac)3与对齐的P3HT成功地在最著名的钙钛矿太阳能电池上发挥作用,显示出24.6%的增强效率。这项工作为钙钛矿太阳能电池的高性能和产业化提供了一条途径。

P3HT是最具吸引力的空穴传输材料之一,可用于追求稳定、低成本和高效的钙钛矿太阳能电池。然而,P3HT/钙钛矿界面接触不良和严重复合导致低功率转换效率。鉴于此,2022年11月17日华南师范大学姜月&冯炎聪&高进伟团队于Nature Communications刊发基于P3HT构建分子桥制备高效稳定钙钛矿太阳能电池的研究成果,构建了一个分子桥,2-((7-(4-(双(4-甲氧基苯基)氨基)苯基)−10-(2-(2-乙氧基乙氧基)乙基)−10H-吩恶嗪-3-基)亚甲基)丙二腈(MDN),其丙二腈基团可以锚定钙钛矿表面,而三苯胺基团可以与P3HT形成π-π堆积,形成电荷传输通道。此外,还发现MDN可以有效钝化缺陷并在很大程度上减少重组。最后,使用MDN掺杂的P3HT(M-P3HT)作为空穴传输材料实现了22.87%的效率,远高于使用原始P3HT的器件效率。此外,MDN使未封装的器件具有更高的长期稳定性,即使在75%相对湿度(RH)下老化两个月,然后在大气中85% RH下老化一个月后,仍能保持其初始效率的92%,并且效率在最大功率点(MPP)下在1个太阳光照(N2中约45 ℃)下运行超过500小时后不会发生变化。


索比光伏网 https://news.solarbe.com/202309/22/372123.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
34.07%!众能光储实现钙钛矿/晶硅叠层电池效率新突破来源:钙钛矿光链 发布时间:2026-02-06 09:25:31

近日,无锡众能光储自主研发的钙钛矿/晶硅异质结叠层电池,经TV北德认证光电转换效率达34.07%,跻身全球前列。碳基领跑:碳基实验线效率24%,团队在碳基钙钛矿电池效率方面先后四次打破领域记录,处于世界领先水平。叠层突破:HJT/钙钛矿叠层电池效率TV认证效率34.07%,跻身全球前列,深度融合自主研发的空间钙钛矿能源路线,为航天等高端应用场景的产业化落地奠定了坚实的工艺基础,并构建起完整的系统解决方案。

阿特斯:在太空光伏相关的HJT、钙钛矿叠层等领域取得了领先性的研发成果来源:索比光伏网 发布时间:2026-01-30 17:43:35

近日,阿特斯在接受投资者调研时表示,公司在与太空光伏相关的晶体硅电池、钙钛矿/HJT叠层电池与组件等方向已经进行了长期技术开发及储备,并且取得了领先性的研发成果。2020年阿特斯搭建了行业技术领先的HJT中试线,并在光伏业内率先开发并推出了半片电池技术,具备80微米乃至更薄HJT电池研发和中试能力。

瑞士屋顶光伏服役30年,发电效率仍超八成来源:能源转型与双碳观察 发布时间:2026-01-29 09:18:56

瑞士研究团队发现,热量是影响电池板寿命的关键因素。封装胶膜老化会产生易引发腐蚀的化学物质,进而导致电池板发电效率下降。该研究对房主与电网的意义若光伏电池板在使用超30年后仍能保持较高发电效率,将彻底改变太阳能作为投资的成本效益计算。此外,这一发现还关乎气候保护与公众健康。对“长寿命”的客观认知该研究并非表明所有光伏电池板都能以最小的损耗运行超过30年。

突破55W/g!我国新型钙钛矿空间光伏技术刷新“功质比”世界最高纪录!来源:钙钛矿工厂 发布时间:2026-01-29 08:47:41

量级革命,刷新人类光伏功质比最高纪录钙钛矿太阳能电池凭借其卓越的光电特性,成为制备高功质比器件的理想载体。公司科研团队自2019年起深耕大功质比超轻量柔性钙钛矿技术领域,历经数年技术攻关,多次刷新行业纪录。

27.87%!光因再破单结钙钛矿电池效率天花板来源:光伏前沿 发布时间:2026-01-26 09:17:45

光因科技此次突破,不仅大幅拉开了与晶硅技术的差距,更为全钙钛矿叠层电池突破35%的转换效率预留了充足空间。

33.45%!琏升科技异质结/钙钛矿叠层电池效率再攀新高峰来源:琏升科技 发布时间:2026-01-23 09:09:45

由琏升科技研发的钙钛矿/晶硅异质结叠层电池再次实现里程碑式效率跃升——经国家太阳能光伏产品质量检验检测中心权威认证,转换效率从32.99%提升至33.45%。这一效率突破的核心在于琏升科技对HJT底电池的深度重构和钙钛矿顶电池界面工程的升级。因此,异质结及异质结叠层电池具备“高效、轻质、低成本、柔韧、抗极端环境”等特性,有望成为平衡高效率与低成本的下一代技术路线。

协鑫集成申请钙钛矿电池界面修饰层结构专利,抑制非辐射复合提升电池效率来源:金融界 发布时间:2026-01-23 08:32:49

国家知识产权局信息显示,协鑫集成科技股份有限公司;芜湖协鑫集成新能源科技有限公司申请一项名为“钙钛矿电池及其制备方法、叠层电池和光伏组件”的专利,公开号CN121368259A,申请日期为2025年10月。通过天眼查大数据分析,协鑫集成科技股份有限公司共对外投资了32家企业,参与招投标项目504次,财产线索方面有商标信息21条,专利信息304条,此外企业还拥有行政许可45个。

32.38%效率认证!迈为股份实现G12H钙钛矿/晶硅异质结叠层电池关键突破来源:迈为股份 发布时间:2026-01-21 17:08:36

近日,经中国计量科学研究院权威认证,迈为股份采用自主研发的可量产设备与工艺,成功研制的钙钛矿/晶硅异质结叠层电池,光电转换效率达到32.38%。公司与苏州大学、北京工业大学等高校团队合作,成功开发出认证效率高达33.6%的柔性钙钛矿/晶硅异质结叠层太阳能电池。

大哲光能钙钛矿项目获批来源:钙钛矿光链 发布时间:2026-01-20 11:01:49

据浙江政务服务网公示信息,1月15日,嘉兴大哲光能有限公司钙钛矿太阳能电池研发项目完成备案。

极电姜伟龙:从“长江生态”看钙钛矿技术的价值跃迁来源:极电光能 发布时间:2026-01-19 14:13:46

演讲中,姜伟龙博士从极电光能的实践案例出发,生动展示了钙钛矿技术的广阔应用图景。聚焦场景核心需求解析钙钛矿技术价值潜能从应用场景出发,姜伟龙博士进一步剖析了钙钛矿的技术价值。姜伟龙博士认为,钙钛矿技术的寿命潜力,有赖于全产业链的耐心攻坚与紧密协作。这一理念正与“长江生态”一脉相承。

牛津光伏:计划到2028年实现钙钛矿叠层组件效率达27%、寿命达20年的目标来源:钙钛矿工厂 发布时间:2026-01-19 09:23:53

近日,钙钛矿太阳能光伏领先公司牛津光伏(Oxford PV)表示,随着可靠性和光电转换效率的持续提升,计划于2028年将其钙钛矿/晶硅叠层太阳能组件产品实现批量化生产。

新闻排行榜
本周
本月