,中科院化学研究所分子纳米结构与纳米技术重点实验室的研究人员近期在设计和构筑基于三维导电网络与组装结构的高效量子点敏化太阳能电池材料,以及低成本薄膜太阳能电池材料的研究方面取得了新的进展。设计制备出由
,中科院化学研究所分子纳米结构与纳米技术重点实验室的研究人员近期在设计和构筑基于三维导电网络与组装结构的高效量子点敏化太阳能电池材料,以及低成本薄膜太阳能电池材料的研究方面取得了新的进展。设计制备出由
),1.7%量子点敏化电池效率(当时的世界纪录)。 原标题:盘点李河君的那些“竞争对手”:CIGS第一争夺战
基材,使用溅射技术沉积缓冲层,一般来说是化学气相沉积技术或通过原子层沉积,而铜铟镓硒层是利用合金靶材以短周期溅射沉积,其制程改善一般硒化太阳能电池所需要的长时间。透过高速溅射技术,太阳能电池的制造周期
CIGS、CdTe、非晶硅等,也面临类似的问题。新兴的第三代太阳能电池,如量子点电池、染料敏化太阳能电池、有机太阳能电池等,则可以利用印刷、喷涂等溶液法制备,大大降低制造的成本,但由于电荷分离效率低等
真空或高温条件,成本较高。第二代太阳能电池,包括CIGS、CdTe、非晶硅等,也面临类似的问题。新兴的第三代太阳能电池,如量子点电池、染料敏化太阳能电池、有机太阳能电池等,则可以利用印刷、喷涂等溶液法制
,包括CIGS、CdTe、非晶硅等,也面临类似的问题。新兴的第三代太阳能电池,如量子点电池、染料敏化太阳能电池、有机太阳能电池等,则可以利用印刷、喷涂等溶液法制备,大大降低制造的成本,但由于电荷分离效率
而言,这种结构具有天然优势:较高的电荷载体迁移率和较好的光线扩散性能,使光电转换过程中的能量损失极低。虽然碘化铜能够充当钙钛矿太阳能电池中的空穴导体现在才被证明,但铜系导体之前就被认为能够在染料敏化
最高效率达到了8%,还远低于基于空穴材料的钙钛矿型电池。同时,对该类太阳能电池工作机理的认识上还存在敏化机制和异质结机制的争论。最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)清洁能源重点
制造而言,这种结构具有天然优势:较高的电荷载体迁移率和较好的光线扩散性能,使光电转换过程中的能量损失极低。虽然碘化铜能够充当钙钛矿太阳能电池中的空穴导体现在才被证明,但铜系导体之前就被认为能够在染料敏化
太阳能电池和量子点太阳能电池中充当重要角色,而最具吸引力的是它们优良的导电性能。碘化铜导体的导电率比spiro-OmetaD高两个数量级,这使其能达到更高的填充系数,也决定了用其制成的太阳能电池具有
制造而言,这种结构具有天然优势:较高的电荷载体迁移率和较好的光线扩散性能,使光电转换过程中的能量损失极低。虽然碘化铜能够充当钙钛矿太阳能电池中的空穴导体现在才被证明,但铜系导体之前就被认为能够在染料敏化
太阳能电池和量子点太阳能电池中充当重要角色,而最具吸引力的是它们优良的导电性能。碘化铜导体的导电率比spiro-OmetaD高两个数量级,这使其能达到更高的填充系数,也决定了用其制成的太阳能电池具有
就被认为能够在染料敏化太阳能电池和量子点太阳能电池中充当重要角色,而最具吸引力的是它们优良的导电性能。碘化铜导体的导电率比spiro-OmetaD高两个数量级,这使其能达到更高的填充系数,也决定了用其