快速且平滑地通过太阳能电池。美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。多伦多大学已经和沙特阿拉伯阿卜杜拉国王科技大学签署了科技授权协议,将推动这项技术全球商业化。
索比光伏网讯:钙钛矿对可见光的吸收非常好,但其完美的单晶结构从未被彻底研究过。据最新一期《科学》杂志报道,加拿大工程师利用新技术生长出大块的钙钛矿纯晶体,从而为开发出更便宜、更高效的太阳能电池和
发光二极管打下了基础。 由多伦多大学电子与计算机科学系著名教授泰德萨金特领导的科研团队,使用基于激光的组合技术对钙钛矿晶体的所选属性进行了测量。通过跟踪材料中电子的快速运动,研究人员确定了电子的扩散距离及
很宽的可见光和红外光谱,这些材料在吸收太阳能方面是高度互补的。
未来,我们会探索更多太阳能吸收材料,Comin博士说,结合钙钛矿晶体和胶体量子点技术来提升吸收效率,非常有发展前景。
的单晶体尚未被详细地研究。
利用新技术,研究者们制成了大块纯钙钛矿晶体,并研究了在光电转化过程中,电子在该材料中的运动方式。
安装在恒温器上的橙色纯钙钛矿晶体
多伦多大学的爱德华
真正的革命。 6、太阳能纳米技术集中爆发 2014年,太阳能光伏相关的纳米技术迎来爆发性繁荣。 加拿大研究人员设计并测试了一种新型固态、稳定的光敏纳米粒子胶体量子点技术,该技术或
和两名同事已经组建了一家名为Solarity的公司,来将科研结果推向市场。大部分薄膜电池使用的技术是纳米管、量子点、热载流子,但是Fonash采取了不同的方法。它采用了光线和载体收集管理纳米架构,通过
光伏领域的研究工作开展得如火如荼,多个国家的政府、大学以及研究机构正投如大量的资源开展该领域的研究。通过调查,多个实验室正致力于从纳米技术的角度进行薄膜和晶体的研究。其他实验室也开展了许多十分具有
在来自瑞典Lund大学最近的一项研究中,研究人员利用新技术来研究太阳能电池非常快的过程。研究成果将会太阳能电池变得更加高效。
现今太阳能电池的转化效率上限约为33%左右。然而,研究人员现在发现
略有不同,且更具优势。
Lund大学的化学物理教授T?nu Pullerits说:他们完全没想法它能工作,
在这项研究中,T?nuPullerits和他的同事们研究了含有被称为纳米尺寸量子点
。他和两名同事已经组建了一家名为Solarity的公司,来将科研结果推向市场。大部分薄膜电池使用的技术是纳米管、量子点、热载流子,但是Fonash采取了不同的方法。它采用了光线和载体收集管理纳米架构
索比光伏网讯:光伏领域的研究工作开展得如火如荼,多个国家的政府、大学以及研究机构正投如大量的资源开展该领域的研究。通过调查,多个实验室正致力于从纳米技术的角度进行薄膜和晶体的研究。其他实验室也开展了
实现喷涂式太阳能技术的关键。IBM研究人员透露,喷涂式太阳能电池技术的秘密成分是胶状量子点(colloidalquantumdots)。
IBM员工、目前以博士后研究员身分参与多伦多
。
量子点在高亮度LED以及创新的窗户内建太阳能电池中有越来越多应用,IBM的加拿大研发中心与多伦多大学相信,他们已经朝向利用量子点在本世纪实现喷涂式太阳能电池技术的道路前进。Kramer将新开发的制程
设计并测试了一种新型固态、稳定的光敏纳米粒子胶体量子点技术,该技术或将用于开发更为廉价、柔性的太阳能电池及更好的气体感应器、红外激光器、红外发光二极管。此项研究成果发表在最新一期《自然材料》上。美国
的喷涂LD设备不仅价格低廉,而且很多部件都是现成的。喷嘴用的是钢铁厂里冷却钢铁用的喷水嘴,喷枪是从艺术品商店里买来的。Kramer的导师Ted Sargent教授说道:由于量子点太阳能技术
索比光伏网讯:最近,多伦多大学和IBM加拿大研发中心的电气与计算机工程系博士后Illan Kramer和他的同事采用微型光敏材料胶体量子点(CQDs),开发出了一种新的在弯曲的物体表面制作喷涂