效率最重要的指标 之一,是电站实际输出功率与理论输出功率的比值,反映整个电站扣除所有损耗后(包括辐照损失、 线损、器件损耗、灰尘损失、热损耗等)实际输入到电网电能的一个比例关系【2】。电站的 PR 值越
到 16 点 18 分结束,参考图 3,原始环境温度和辐照数据从软件中获取了 100 个采集点(时间间 隔 5 分钟),其中数据的准确度可能和实际有点误差,但这里并不影响各个方法的比较。从图 3 计算
要的指标 之一,是电站实际输出功率与理论输出功率的比值,反映整个电站扣除所有损耗后(包括辐照损失、 线损、器件损耗、灰尘损失、热损耗等)实际输入到电网电能的一个比例关系【2】。电站的 PR 值越接 近
开始到 16 点 18 分结束,参考图 3,原始环境温度和辐照数据从软件中获取了 100 个采集点(时间间 隔 5 分钟),其中数据的准确度可能和实际有点误差,但这里并不影响各个方法的比较。从图 3
阵内光伏组串直流输出直接接入逆变器。方案简图见图2。
图2组串式方案简图
因采用的方案不同,造成运维工作的难度及成本也有明显不同。下面从安全性、可靠性、故障率及故障定位精确性、巡检、故障影响
组串输出需要通过直流汇流箱并联,再经过直流柜,100多串组串并联在一起,直流环节长,且每一汇流箱每一组串必须使用熔丝。按每串20块250Wp组件串联计算,1MW的光伏子阵使用直流熔丝数量达到200个
推算随后24年发电量。估算第一年发电量时,通常需要考虑的因素如下:倾斜面太阳光辐照量修正;组件表面灰尘等异物挡光的影响;温度对光伏组件输出的影响;光伏组件的自身衰减;组串内组件的匹配损失;方阵前后排之间
理论估算的误差,除了在质保起始时间做要求外,一般组件在出厂时都会有一定比例的正功率偏差,这个正功率偏差可以覆盖一部分因人为因素导致的组件发电前的衰减损耗。所以在理论计算上,发电量模拟计算的额定功率起始
:
倾斜面太阳光辐照量修正
组件表面灰尘等异物挡光的影响
温度对光伏组件输出的影响
光伏组件的自身衰减
组串内组件的匹配损失
方阵
了。为了减小实际情况与理论估算的误差,除了在质保起始时间做要求外,一般组件在出厂时都会有一定比例的正功率偏差,这个正功率偏差可以覆盖一部分因人为因素导致的组件发电前的衰减损耗。
所以在
第一年估算值,进一步推算随后24年发电量。
估算第一年发电量时,通常需要考虑的因素如下:
倾斜面太阳光辐照量修正;
组件表面灰尘等异物挡光的影响;
温度对光伏组件输出的影响;
光伏组件的自身
电站从组件开始安装到最后并网发电,之间的时间跨度不一。开始发电时组件可能已经积累了一定比例的衰减了。为了减小实际情况与理论估算的误差,除了在质保起始时间做要求外,一般组件在出厂时都会有一定比例的正功率
,进一步推算随后24年发电量。估算第一年发电量时,通常需要考虑的因素如下:倾斜面太阳光辐照量修正;组件表面灰尘等异物挡光的影响;温度对光伏组件输出的影响;光伏组件的自身衰减;组串内组件的匹配损失;方阵
实际情况与理论估算的误差,除了在质保起始时间做要求外,一般组件在出厂时都会有一定比例的正功率偏差,这个正功率偏差可以覆盖一部分因人为因素导致的组件发电前的衰减损耗。所以在理论计算上,发电量模拟计算的额定功率
LOCE会出现一个拐点,而逆变器可以用来代替SVG功能,控制逆变器的无功输出,来提升系统功率因数。
对于分布式项目,阳光电源逆变器皆采用自动无功跟踪控制方案,即可自动采集电压电流,算出有功,控制每台
逆变器的无功输出,使功率因数提升至0.95以上。
对于大型电站,亦可通过逆变器实现SVG功能。首先,逆变器完全可以满足电网30毫秒的动态响应;其次,逆变器可以达到功率因数为0.9时的无功容量,即
进一步提高系统的利用率,使LOCE降低6%左右。但是,当超配比例增加到一定程度时,其LOCE会出现一个拐点,而逆变器可以用来代替SVG功能,控制逆变器的无功输出,来提升系统功率因数。对于分布式项目
,阳光电源逆变器皆采用自动无功跟踪控制方案,即可自动采集电压电流,算出有功,控制每台逆变器的无功输出,使功率因数提升至0.95以上。对于大型电站,亦可通过逆变器实现SVG功能。首先,逆变器完全可以满足电网
mW/cm2,环境温度:25℃,短路情况连续电流输出)(a)归一化效率衰减10%,(b)效率绝对值衰减统计图
如图3-4所描述,通过简单改变扫描条件即可消除迟滞效应、以及良好的稳定性是保证我们的
在Table III,被归类为Notable exceptions和not class records,主要原因在于面积过小容易引起较大测量误差。关于严格测试的重要性在最近连续几篇Nature子刊的评论文章中