等高海拔地区的数十兆瓦级光储独立微电网系统中,阳光电源提供了包括虚拟同步机及阻抗自适应控制技术、光伏逆变器、储能变流器、锂电池储能系统及监控系统等在内的主要关键技术及设备,无惧各种复杂气候环境及负载
模电流(在实际光伏并网设备中俗称漏电流)、向电网注入直流分量等。由于在无变压器光伏并网逆变器中没有变压器的隔离作用,电网与光伏阵列存在直接的电气连接,而光伏阵列和地之间存在虚拟的寄生电容,因此形成了由
寄生电容、滤波元件和电网阻抗组成的共模谐振回路。寄生电容上变化的共模电压在这个共模谐振回路中就会产生相应的共模电流(即漏电流),如下图所示。
无变压器光伏并网系统中的共模电流会带来很多问题和危害,如
一般都会在C上串一个电阻,如果不串电阻最好检测C上电流,做反馈,也就是虚拟阻抗的方法。
电压源逆变器一般不与电网连接,直接为负荷供电,比如UPS,这时只要电压纹波系数小于一定值就可以了,即负荷能承受
性能优秀的电容器。它的主要特性如下:无极性,绝缘阻抗很高,频率特性优异(频率响应宽广),而且介质损失很小。基于以上的优点,所以薄膜电容器被大量使用在模拟电路上。尤其是在信号交连的部分,必须使用频率特性良好
。逆变器停止运行,接地故障的电池组件整列被切除。(图1-8所示)
(II)增加ISO(绝缘检测)功能:
依据IEC62109,非隔离型并网逆变器需要在开机前进行组件的绝缘阻抗检测,市场主流的
,使用组串式逆变器,PID现象的发生同样不可避免。负极接地同样是一种行之有效的预防措施,由于组串逆变器系统和集中式逆变器系统的差异,需要另一种接地方式。国外的一些逆变器厂家提出了一种虚拟接地的方式
遮挡的情况下,智能芯片能够虚拟并联阻抗,从而减少系统电流失配造成的组件功率损失。在遇到阴影、污染、老化以及不适宜屋顶朝向的问题时能减少失配造成的负面影响,并通过电池串级别的最大功率点跟踪达到发电量
发电机的并网功率具有很大的惯性,避免了并网功率的快速波动。通过对光储逆变器的参数设置以及阻抗匹配,可以使分布式光储系统具有与同步发电机类似的并网特性。当前文献对光储虚拟同步机建模的研究还有所不足,多采用
问题纳入到控制模型中;在设备层面上,当前文献多关注光伏逆变器、分布式储能和OLTC等设备,对于诸如虚拟同步机和固态分接头变压器等新型设备在含高比例户用光伏低压配电网中应用和控制的研究还有所不足。因此
惯性,避免了并网功率的快速波动。通过对光储逆变器的参数设置以及阻抗匹配,可以使分布式光储系统具有与同步发电机类似的并网特性。当前文献对光储虚拟同步机建模的研究还有所不足,多采用简化的网络模型并且没有
指标的考虑还不充分,也少有文献将辅助服务的定价问题纳入到控制模型中;在设备层面上,当前文献多关注光伏逆变器、分布式储能和OLTC等设备,对于诸如虚拟同步机和固态分接头变压器等新型设备在含高比例户用光伏
的基础上,提出一种适应独立微网分层协调控制的改进型VSG策略;然后,在基本VSG控制器中增加虚拟阻抗环节,灵活实现对微网谐波的抑制;最后,建立一套包含2台100 kV*A VSG及1台440 kW
微网分层协调控制的改进型VSG策略。然后,利用引入虚拟阻抗环节的VSG控制方案,解决非线性负载恶化微网系统供电质量的问题。最后,建立一套包含2台100 kV*A-VSG及1台440 kW-DGS并联的
可再生能源综合利用示范系统。丹麦RIS?实验室、德国FraunhoferIWES研究所等机构建立了多能互补技术试验示范系统,并且在下垂控制、虚拟阻抗、分层控制等关键技术方面也取得了重要突破。赵栋利表示
逆变器作为光伏电站的核心,主要作用是把光伏组件不规则的直流电,转换为正弦波交流电,同时还有过压、过流保护、绝缘阻抗保护、漏电流保护、电网电压频率异常保护等功能。随着光伏组件价格下调和效率的提升
PE发生短路后,容易产生电弧引起火灾;
需要额外增加一台隔离变压器,成本相对较高
方案2:采用虚拟接地方案,消除组件负极对地的负压
这种方案适用于由多台非隔离型光伏逆变器构成的大型光伏电站,此