但据内部可靠消息透露,明阳薄膜科技已在此研究基础上,成功将基于全溶液两步法制备的钙钛矿/硅两端子叠层电池光电转换效率进一步提升至34%,刷新该技术路线的全球效率纪录。值得注意的是,此次效率突破并非孤立的实验室成果,而是建立在深度产学研协同与清晰产业化路径基础上的系统性进展。明阳薄膜科技与中科大徐雪青团队的合作,再次彰显了“产学研深度融合”在新能源技术创新中的关键作用。
Spiro-OMeTAD是高效n-i-p钙钛矿光伏器件中最常用的空穴传输层材料,然而传统掺杂方法导致器件运行稳定性差。最佳钙钛矿太阳能组件的认证效率达到20.95%,是目前无锂spiro-OMeTAD基组件中的佼佼者。高效大面积组件与超强稳定性:实现20.95%认证效率的钙钛矿太阳能组件,并在未封装条件下连续运行700小时仍保持97%初始效率,为无锂spiro基器件树立新标杆。
11月28日,京东方A对外披露了其在钙钛矿领域的最新进展,其在接受投资者调研时表示,已实现从手套箱到实验线再到中试线三大平台全工艺流程拉齐,各平台在光电转换效率方面均已达到行业一流水平。据京东方A透露,公司采用刚性、柔性、叠层组件技术路线并行开发,三大研发平台效率不断突破。今年5月,京东方A实验线产品通过德国莱茵认证,标志着公司在钙钛矿光伏组件的可靠性达到行业头部水平。
与通过旋涂制备的小面积钙钛矿薄膜需要在惰性气氛中长时间热退火以实现完全结晶不同,可印刷钙钛矿光伏面临晶体生长质量与环境水氧暴露导致降解之间的关键矛盾。该策略实现了24.0%和20.7%的光电转换效率,代表了可扩展钙钛矿光伏中报道的最高值。研究亮点:揭示环境降解机制并锁定“无降解窗口”:通过原位GIWAXS分析,首次明确了钙钛矿在大气热处理过程中的四阶段演化路径,并精准识别出123±18秒的关键无降解时间窗口。
本文兰州大学曹靖等人设计了一种具有强偶极矩与多重配位位点的可溶液加工四磺酸基卟啉中间层,通过简单的水相后处理垂直锚定在SnO/钙钛矿界面。磺酸基的强吸电子特性赋予卟啉分子显著的固有偶极矩,显著促进电子从钙钛矿向SnO的高效提取与传输。经修饰的钙钛矿模块实现了24.49%的光电转换效率,位居已报道最高水平之列,小面积器件效率达26.66%。
近日,我国科研团队在新型薄膜太阳能技术领域取得重要进展,成功通过溶液法制备出均匀、大面积kesterite太阳能组件,并实现10.1%的认证效率!其中,kesterite因其元素丰富、无毒、稳定性好,被视为极具潜力的新一代光吸收材料。然而,溶液法制备多元素无机薄膜一直面临结晶不均匀、晶粒生长难以控制等挑战,导致组件效率长期停滞不前。
本研究南开大学刘永胜等人成功开发了一种原位聚合策略,构建功能性底部界面层与体相聚合物网络,实现了大气环境下刮涂钙钛矿薄膜的结晶控制与缺陷钝化。最终,基于大气刮涂钙钛矿薄膜的器件在5×5cm微型组件中实现了20.78%的稳态效率。高效大面积刮涂工艺:在开放大气环境中实现刮涂制备,微型组件稳态效率达20.78%,为机械划线模块中迄今最高效率之一。
同时,MBP展现出超强的浸润性,有助于溶液法制备过程中钙钛矿前驱体的均匀沉积,减少缺陷形成。基于这一界面优化策略,小面积TPSCs实现了17.89%的认证光电转换效率,反向扫描效率达17.71%,刷新了当前TPSCs领域的最高效率纪录。此外,大面积器件也取得了14.40%的优异效率,同样处于国际领先水平。这一成果不仅推动了高效稳定锡基钙钛矿太阳能电池的发展,也为未来无铅光伏技术的商业化应用奠定了坚实基础。大面积TPSCs也实现了14.40%的效率,同样创下纪录。
锡基钙钛矿太阳能电池作为一种前景广阔的无铅、环境友好型光伏器件,其倒置结构认证效率已超过16%。基于此,倒置小面积TPSCs实现了17.89%的记录效率,封装器件在1344小时环境储存后仍保持95%以上初始效率,在1550小时连续光照运行后仍保持94%以上。此外,1cm大面积TPSCs效率达14.40%,创下新纪录,凸显了该策略的可扩展性。大面积器件性能突破:1cmTPSCs效率达14.40%,展示出优异的可扩展性与均匀性,推动锡基钙钛矿电池走向实用化。