纳米结构

纳米结构,索比光伏网为您提供纳米结构相关内容,让您快速了解纳米结构最新资讯信息。关于纳米结构更多相关信息,可关注索比光伏网。

高效组件将大幅增长,提高光伏产业利润来源:Solarbe.com 发布时间:2011-09-30 08:37:55

层、选择性发射极技术、新光捕获技术、正面金属化以及双面电池。 同样,在研究和发展阶段也取得了各种成果,包括在稀土材料和硅纳米粒子的基础上产生的热载流子技术、3-D电池结构以及新能量转换层技术

2015年光伏产业高效率太阳能电池的份额将升到31%来源: 发布时间:2011-09-28 23:59:59

、异质结电池、钝化层、选择性发射技术、新型光捕获技术、小型前端金属化与双面电池。还有一些技术处于研发阶段,包括热载流子技术、3D电池结构以及基于稀土与硅纳米粒子的新型能量转换层

纳米管让太阳能光伏电池更便宜来源: 发布时间:2011-09-28 17:36:46

索比光伏网讯:来自美国西北大学的研究人员研发出了一种能改革太阳能电池生产方法的碳材料。这种新的太阳能电池材料是由碳纳米管组成的透明导体,这为太阳能电池生产提供了另一种途径。当前的太阳能电池技术依赖于
一种相对较稀有的元素。地球上碳元素含量丰富,碳纳米管有望促进太阳能的长远发展,提供一种成本效益更高的太阳能电池制造方法。另外,这种材料拥有良好的柔韧性,使得制成的太阳能电池可以集成到织物和衣服中,为

纳米线薄膜可显著降低太阳能电池成本来源: 发布时间:2011-09-28 14:54:13

索比光伏网讯:据美国物理学家组织网9月27日(北京时间)报道,美国杜克大学的科学家研制出了一种新型纳米结构,其具有降低手机、电子阅读器和iPad等显示器制造成本的潜力,亦能帮助科学家构建可折叠的
采用的新方法则解决了这一难题。研究小组制成的铜纳米线还在弯折次数上有了较大突破,在来回弯曲1000次以后,其仍能保持传导性和形状。与此相比,ITO薄膜的传导性和结构在几次弯折后就会损坏。目前威利参与

英国专家开发太阳能热发电新技术来源:Solarbe.com 发布时间:2011-09-26 14:39:17

。 在工程现场可以看到12万平方米的抛物面槽,它们利用吸收到的太阳能将熔融硝酸钠盐的温度维持在550°C左右。据该项目团队的专家介绍,利用纳米技术可以分离介质的导电性和导热性,这将在不影响导电材料的结构下降低传热率。相关人员表示看好该项目的商业前途。

揭秘铁电材料的光电机制 生产高性能太阳能电池 来源:科技日报 发布时间:2011-09-26 08:54:06

的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。科学家已经了解到铁电材料的原子结构可以使其自发产生极化现象,但至今尚不清楚光电过程是如何在铁电材料中发生的。如果能
排列着不同的电畴。电畴为条状,每个电畴宽为50纳米到300纳米,畴壁为2纳米,相邻电畴的极性相反。这样研究人员就可以清楚地知道内置电场的精确位置及其电场强度,便于在微观尺度上开展研究,同时也避免了杂质

BFO 有望大幅提高太阳能电池的效率来源:Solarbe.com 发布时间:2011-09-23 09:11:14

一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。科学家已经了解到铁电材料的原子结构可以使其自发产生极化现象,但至今尚不清楚光电过程是如何在铁电材料中发生的。如果能
不同的电畴。电畴为条状,每个电畴宽为50纳米到300纳米,畴壁为2纳米,相邻电畴的极性相反。这样研究人员就可以清楚地知道内置电场的精确位置及其电场强度,便于在微观尺度上开展研究,同时也避免了杂质原子

科学家发现可能提高太阳能电池效率的铁电材料来源: 发布时间:2011-09-22 10:40:35

材料的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。科学家已经了解到铁电材料的原子结构可以使其自发产生极化现象,但至今尚不清楚光电过程是如何在铁电材料中发生的
不同的电畴。电畴为条状,每个电畴宽为50纳米到300纳米,畴壁为2纳米,相邻电畴的极性相反。这样研究人员就可以清楚地知道内置电场的精确位置及其电场强度,便于在微观尺度上开展研究,同时也避免了杂质原子

金属纳米波导中表面等离激元的手性传播和纳米尺度1/4波片来源: 发布时间:2011-09-19 23:59:59

索比光伏网讯: 金属纳米结构中的表面等离激元具有许多奇特的光学性质,如光场局域效应、透射增强、共振频率对周围环境敏感等,因而被广泛应用于纳米集成光学器件、癌症热疗、光学传感、增强光催化、太阳能电池

有机太阳能电池的新突破来源: 发布时间:2011-09-16 17:05:02

索比光伏网讯:NPL的科学家已经在有机太阳能电池计量这种新技术上取得了重大的突破,研究表明新型的原子力显微镜(AFM)是可以看到有机太阳能电池工作层面,并且性能与其三维的纳米结构有关。太阳能光伏
举足轻重,但仍很难衡量究竟结构方式如何影响电力性能和特性。平滑聚合物纳米线为基础的有机太阳能电池的光电原子力显微镜(PC-AFM)图像研究表明,可以获得有机太阳能电池表层以下至少20纳米结构和电子信息