将地球大气环境从缺氧转化为富氧的功臣蓝绿藻,最近英国科学家把它打印在纸上制成微型生物太阳能电池板,大概一个iPad大小。团队认为,因为电池可生物降解,这能应用于医疗保健预算较低的发展中国家,作为健康
为今天的富氧,刺激了生物多样性并导致厌氧生物接近灭绝,显著改变地球生命形式的组成。
由伦敦帝国理工学院、剑桥大学和中央圣马丁学院组成的研究团队将蓝绿藻以喷墨方式印刷到导电纳米碳管,再用相同方法将后者
近日,中国科学院深圳先进技术研究院研究员喻学锋与副研究员李佳合作在钙钛矿/黑磷复合纳米材料的研究领域取得新进展,通过简单的液相制备工艺成功在黑磷纳米片上原位生长全无机钙钛矿纳米晶颗粒,制备出了零维
国家纳米科学中心丁黎明教授、华南理工大学叶轩立教授研究团队合作,首先利用半经验模型,从理论上预测了有机太阳能电池实际可以达到的最高效率和理想活性层材料的参数要求。在此基础上,采用成本低廉与工业化生产兼容的溶液加工方法制备得到了高效的有机太阳能垫层器件,获得了17.3%的验证效率。
瑞士洛桑综合理工学校(EPFL)的科学家们,与米兰分子科学技术研究所及卡塔尔环境与能源研究所合作开发出一种钙钛矿材料,这种材料可用作普通铅基钙钛矿太阳能电池的表层,能提高太阳能电池的稳定性和抗湿性
。
在《纳米快报》上发表的研究报告《防水低维氟钙钛矿,用于20%高效太阳能电池的界面涂层》中,研究小组描述了这一稳定性提高且转换效率达到20%的产品。
这一涂层为氟有机阳离子,它被用作有机间隔物,以
。 近日,中国科学院福建物质结构研究所功能纳米结构设计与组装重点实验室易志国科研团队在开展铁电体物理与光催化化学的交叉科学研究过程中,发现具有中心对称结构的钒酸铋材料具有大的反常光伏效应。在与中科院上海
太阳能电池的极限能效为15%左右。
团队负责人、莱斯大学化学与生物分子工程系兼材料科学与纳米工程系研究员Rafael Verduzco博士称:这些装置的能效已经得到提升,但它们的机械性能也不可忽视
日前,美国莱斯大学、休斯敦社区大学和布鲁克海文国家实验室的科学家团队已经研发出一种柔软的有机太阳能光电板,这种太阳能板能够在电量十分匮乏的地区发挥巨大作用。相关研究已经发表在《材料化学》杂志上
,它们需要更高效。 在2月8日发表在科学杂志上并由美国能源部和国家科学基金会赞助的一项研究中,研究人员更详细地描述了如何在传统钙钛矿中添加碱金属以获得更好的性能。 加州大学圣地亚哥分校的纳米工程教授
设计,从而解决了薄膜太阳能面板防水效果差和使用时间长会导致面板结构整体性受损这两大主要难题。
5、有机太阳能集光器
麻省理工大学的科学家们已经找到一种能够将普通玻璃变成高端太阳能集光器的方法。这项技术
结构复杂,但成本较低。科学家们主要是利用镀膜玻璃板来收集那些未被太阳能电池表面吸收的太阳光,从而就将普通的镜子也就变成了太阳能集光器,甚至是楼房的玻璃可以应用这项技术来吸收转化能源。此外,格伦桑能源
目标,科学家将含铋、钒、钨的溶液喷射到热玻璃基板上,然后将溶剂蒸发。通过多次喷涂不同浓度的溶液,得到了一个厚度约300纳米的高效光活性金属氧化物层。德克罗尔说:我们仍然不是很了解为什么钒酸铋工作得非常好
通讯》杂志上。
科学家们开发的这套系统可以通过太阳光将水分解成氢气和氧气,这使得太阳能可以被转换成氢能并存储起来。亥姆霍兹柏林材料与能源中心太阳能燃料研究所主任罗尔范德克罗尔教授说:我们结合了两方面
导读: 据物理学家组织网报道,美国科学家表示,他们最新研制出了一种便宜且稳定的液体太阳能电池。这种由纳米晶体制成的电池体形非常娇小,因而能以液体墨水的形式存在,可印刷或者涂抹在干净基底的表面
。
据物理学家组织网报道,美国科学家表示,他们最新研制出了一种便宜且稳定的液体太阳能电池。这种由纳米晶体制成的电池体形非常娇小,因而能以液体墨水的形式存在,可印刷或者涂抹在干净基底的表面。最新研究发表在