高能光子触发。此前,由于电和光损耗的存在减少了所收集电子的数量,因此科学家未能在实际设备中观察到该现象。研究负责人赫拉赛文教授解释说:我们的纳米结构器件没有重组和反射损失,因此我们可以收集到所有倍增的
,黑硅光电探测器的效率高达130%,这意味着一个入射光子产生大约1.3个电子。
阿尔托大学研究人员表示,这一重大突破背后的秘密武器是黑硅光电探测器独特的纳米结构内出现的电荷载流子倍增过程,该过程由
外媒报道称,美国加州电池初创公司Coreshell Technologies在近期的新一轮融资中获得了400万美元的支持,而该公司目前正在研发一种全新的纳米涂层,可用于延长电池使用寿命
这种特殊的纳米涂层可附着于电池的电极之上,以此减轻化学反应带来的电池容量下降的印象。据悉,这项科技可以有效地提高电池的电压范围,并提高电池的能量密度。
从原理层面来看,固体电解质间相(SEI)的形成是
效率、较低的制造成本、可制备柔性结构等优势,成为最有发展前景第三代太阳能光伏电池。2009年首次提出钙钛矿太阳能光伏电池概念,2013年被美国《科学》杂志评为十大科学突破之一,2014年被Nature杂志
总体上,我国钙钛矿太阳能光伏电池技术与国外先进水平基本持平,产业化工作正在积极推进。
上海交通大学材料科学与工程学院韩礼元教授团队,2017年实现了有效面积36.1平方厘米、认证效率12.1%的大面积
、钒精细化工产品)
10.石墨烯和纳米碳材料、细结构石墨、生物炭、锂电池负极等新型碳材料的开发及生产
11.生物乙醇制乙烯(以粮食为原料的除外)
12.高精密核仪器、仪表开发制造
13.压缩
应用
16.食饮品外包装生产加工
17.节能服务业
18.天然饮用水(矿泉水)
19.边贸产业(边贸市场建设、边贸企业培育)建设与发展
20.口岸加工业建设与发展
21.科学研究和决策评价
7月26日从中国科学技术大学获悉,该校陈涛教授、朱长飞教授团队与合作者合作,发展了水热沉积法制备硒硫化锑半导体薄膜材料,并将其应用到太阳能电池中,实现了光电转换效率10%的突破。这一成果日前发表在
《自然能源》上。
硒硫化锑是近年来在光伏领域应用的一种新兴光伏材料,其带隙在1.11.7电子伏特范围内可调,满足最佳的太阳光谱匹配。同时,硒硫化锑具有较高的吸收系数,500纳米左右厚度的薄膜即能达到
于稳定性。过氧化物很容易被来自太阳能电池中的金属氧化物电极的离子所降解。但现在,韩国蔚山国立科学技术研究院(UNIST)的工程师们已经找到了保护过氧化物的方法,而这个秘密成分就是材料学家们最喜欢的神奇
测试后,它仍然保留了94%的初始效率,这可以使它在为可穿戴电子产品供电时发挥作用。
该研究发表在《纳米通讯》杂志上。
据油价网6月11日报道,植物及其将光和空气转化为燃料的巧妙方式,已为许多科学家带来了灵感。如今,光合作用为解决我们的二氧化碳问题奠定了基础。瑞典林雪平大学(Swedish linkping
宜的过程。
他们的催化剂利用纳米技术添加了碳化钼的纳米颗粒。碳化钼是一种金属和碳的化合物,具有广泛的应用范围,其中包括将二氧化碳转化为一氧化碳以用于化学生产,以及转化为碳氢化合物。
在所有寻求利用
叶绿素造一块太阳能电池?
日前,吉林大学物理学院教授王晓峰课题组与日本立命馆大学、长浜生物科学技术大学的研究团队合作,开发出了两种不同结构的双层或三层全叶绿素的生物太阳能电池,仅由叶绿素衍生物作为光敏
半导体材料,将叶绿素及其衍生物作为主要素材制备新型太阳能电池,既可以实现廉价可再生自然资源的有效利用,又可以通过模仿天然体系的光能转化过程,实现潜在的高光电转换效率。
最初科学家只是简单地将生物体中的
(二期建设))
184.贵州富智康精密电子有限公司(智能生产制造)
185.贵州财富之舟科技有限公司(遵义财富科学城项目等)
(二)高成长性企业(10户)
186.贵阳顺络迅达电子有限公司(片式
绕线电感器产业化项目)
187.贵州亮玛纳米科技有限公司(年产智能终端产品10300万套生产线建设项目)
188.贵州中晟泰科智能技术有限公司(中晟泰科制能制造产业园项目)
189.贵州振华风光
和人类一样,太阳能电池板温度过高也无法正常工作。不过据《科学》报道,现在研究人员发现了一种通过让它们出汗使其冷却的方法,从而增加能量输出。
这是一种简单、有效的对现有太阳能电池板进行改造的方法
,可以立即提高效率。美国马里兰大学帕克分校的材料科学家胡良兵说。
今天,全世界有超过600吉瓦的太阳能发电能力,满足了全球3%的电力需求。这一产能未来10年预计将增长5倍。大多数太阳能发电板利用硅将光能