发电系统提出最低限度的技术要求,并给出具体技术细节规定所参照的技术要求和适用标准。
1.2基本要求
本指南重点关注光伏发电系统的性能保证、性能评价、设计要求、施工要求、安全管理、持续性运维能力等领域
。
1.2.1性能要求
光伏发电系统性能及质量应满足现行国家标准及行业技术要求。
光伏发电系统所采用的设备与产品、辅材辅料、备品备件,均应符合最新修订的国家标准(GB)、行业标准和IEC标准
工艺,决定了其电极的制备工艺与传统有所不同。探究与异质结电池匹配的金属化技术及工艺设计参数,获得高高宽比、低接触电阻的金属栅极是发挥高效异质结电池光电转换效率的重要途径。另外,在单面电池片成本构成中
取得新的进展,常见的晶硅电池金属化技术包括丝网印刷、电镀、喷墨打印等。在传统丝网印刷技术及浆料性能提升和应用过程中,其他的金属化技术都得到了不同程度的改进和发展。
2.1丝网印刷技术
丝网印刷是
7月28日,爱康光电叠瓦组件生产线首件产品成功下线,这是爱康光电组件升级路线上的一个重要里程碑。此款拟命名为鲲鹏系列的叠瓦单晶组件,性能上秒杀一众常规组件,相对传统封装技术的PERC产品也更上新台阶
。
叠瓦技术,是指将传统电池片切为多个小片后,使用导电胶进行叠加串联。传统组件一般都会保留约2~3毫米的电池片间距,而叠瓦工艺消除了电池片间距,在同样组件面积下可以容纳更多的电池,扩大了有效发电面积
,简单画一个光伏产业链的示意图。
在大致了解光伏产业链后,我们可以先来看这样一组数据。
我国光伏各个环节占世界光伏占比:多晶硅料占55%、硅片占83%、电池片占68%、组件占71%、光伏发电
地球每一个角落空地和屋顶。
而且随着储能技术的进步,光伏作为间歇性能源的不稳定性,对电网稳定的冲击,会得到极大的缓解。甚至由于峰谷电价的缘故,光伏+储能还可以解决高峰期用电紧张,低峰期用电浪费的大难
背板采用2.5 mm 厚的透明玻璃使背面光线能进入电池片。单晶n 型双面光伏组件的正面转换效率为18.34%,背面转换效率为15.59%,组件综合转换效率达到19.90%。该类组件的生产厂家主要有
会造成组件内电池片间串联失配,影响发电效果。双面光伏组件的支架应设计成镜框形式,避免遮挡组件背面。图4 为双面光伏组件安装完成图。
2 双面光伏组件的认证进展
目前,国际上的光伏行业测试
更高。
目前,PERC技术成为P型电池效率继续提升的主要方法,但PERC技术应用在多晶及单晶电池片上的效率表现有所差异。单晶电池产线在导入PERC技术后,可使转换效率绝对值提升1%以上,即单晶
威尔士大学合作开发氢钝化技术,能将多晶PERC电池片光致衰减比率降为零。
2017年7月,上海尚德成功开发P型双面PERC电池和组件产品。双面PERC电池正面电池转换效率达到21.4%以上,同时背面
提高了19%,从单晶硅棒源头来推动组件成本的下降。 采用六边形单晶硅片制作电池片,单晶硅棒切方从四边形方棒改为六边形方棒,单晶硅片从四边形改为六边形;组件由电池片、互联条、汇流条和绝缘膜组成电池片
额定值参数、极限参数、质保参数、相关认证等六大类做出详细应用解读。通过这六大类的详细参数,网友就可以深入了解隆基乐叶组件的卓越品质。
隆基乐叶单晶高效组件
一、组件电性能参数
以隆基乐叶
单晶300W组件为例,截选其电性能参数如下:
以上测试符合STC标准测试条件,辐照度为1000W/m2,电池温度25℃,大气质量AM1.5,从图中可以看到,隆基乐叶300W组件的效率达到
Al2O3厚度与PERC电池电性能参数的关系如表2所示。
随着Al2O3厚度由5nm升高到20nm,电池片效率由19.45%升高到20.82%,开路电压由641mV升高到662mV,短路电流由
,这可能是后续工序的激光能量偏低,对开膜部分的Al2O3薄膜清除不彻底,影响了铝浆与硅片之间的欧姆接触而导致。
3 烧结曲线对电池片性能的影响
3.1烧结温度对铝硅合金层厚度的影响
为了研究烧结温度
),开路电压(Voc)降低,使得组件的性能低于设计标准,发电能力也随之下降。2010年,NREL和Solon证实了无论组件采取何种技术的P型晶硅电池,组件在负偏压下都有PID的风险。
图 1
中的位置,决定了电池片和组件受到正偏压或者负偏压。电站实际运行情况和研究结果表明:如果整列中间一块组件和逆变器负极输出端之间的所有组件处于负偏压下,则越靠近输出端组件的PID现象越明显。而在中间一块