工作效率与在明亮光线下一样。
研究人员表示,要在北欧和不列颠哥伦比亚省这样阴雨天气比较多的地方广泛采用太阳能电池,这项创新迈出了重要一步。随着技术进一步发展,这类由活体有机物制成源于生物的
半导体的矿物质,然后将这种混合物涂在玻璃表面。他们采用涂膜玻璃作为电池阳极,生成的电流密度达0.689毫安/平方厘米,而该领域其他研究人员实现的电流密度仅为0.362毫安/平方厘米。
项目负责人
元件的研发者来自浙江大学。
这种新型太阳能电池模拟绿色植物的光合作用,被称为染料敏化太阳能电池。它利用人工合成的有机化学材料,最终把太阳能转化为电能。染料敏化太阳能电池的结构就像一片树叶。制备时,先将
一种半导体材料电子印刷在一片光学玻璃上,这就是叶片。随后将叶片浸泡在染料敏化剂中,直到染料完成吸附,叶片中就有了最关键的叶绿素能够吸收光子,实现光电转化。
浙大化学系教授王鹏领衔的课题组与染料敏化
。如果你拉伸或者弯曲它们时,活动层就会出现破裂,导致它们失效。改善它们这种易损特性的方法之一就是找到天生就非常柔软的聚合物或者其他有机半导体。
但该研究团队并未从上述方法入手,而是另辟蹊径。
我们
日前,美国莱斯大学、休斯敦社区大学和布鲁克海文国家实验室的科学家团队已经研发出一种柔软的有机太阳能光电板,这种太阳能板能够在电量十分匮乏的地区发挥巨大作用。相关研究已经发表在《材料化学》杂志上
近理论上限,成本难再下降。因此,兼顾成本和效率优势的钙钛矿太阳能电池成为该领域最大研究热门。
钙钛矿太阳能电池,采用具有钙钛矿晶体结构的有机无机杂化的金属卤化物作为吸光层,自2009年以来,因制备方式简单
缺陷,并在器件使用寿命期内循环发挥作用。基于此,电池初始效率得到提升,特别是其长期稳定性显著提升,解决了铅卤钙钛矿电池中限制其稳定性的一个重要本质性问题,将有力推进实现钙钛矿太阳能电池的工业化生产。
据介绍,该突破还可推广至其他钙钛矿光电器件,对其他面临类似问题的无机半导体器件,也具有重要参考意义。
效率由中科院半导体所的游经碧研究组突破至23.7%。杭州纤纳光电科技有限公司实现了19.277 cm2的大面积钙钛矿太阳电池组件17.9%的认证光电转换效率,稳态功率输出效率达到17.3%;全无
机钙钛矿太阳电池突破至17%;柔性钙钛矿太阳电池的效率提高到18.40%;无机钙钛矿/有机叠层太阳电池实现14.03%的效率;有机叠层太阳电池17.3%达到世界最高光电转化效率;硒化锑薄膜太阳电池7.6
家用保鲜膜的1/5厚。
JST指出,研究团队是在厚度仅1.4m的超薄塑胶薄膜基板上均匀涂上溶有有机半导体的墨水(Ink)而成功研发出上述全球最轻薄的太阳能电池;目前全球最薄的太阳能电池厚度为25m
日本科学技术振兴机构(Japan Science and Technology Agency)日前发布新闻稿称,已携手东京大学研发出全球最薄、最轻的有机太阳能电池,其厚度仅有1.8-1.9m,仅有
英国皇家化学学会出版的国际无机化学期刊《道尔顿汇刊》上。
南加州大学科学家研制的这种太阳能电池使用的纳米晶体由半导体硒化镉制成,其大小约为4纳米,这意味着一个针头上就可以放置2500亿个,而且其也可以
制造过程更加便宜,但其光电转化效率要稍逊一筹。不过,在最新研究中,研究人员攻克了制造液体太阳能电池面临的关键问题:如何制造出一种稳定且能导电的液体。
以前,科学家们需要让有机配位体分子依附在纳米晶体
能光伏电池要比常见的单晶硅太阳能电池要便宜,但是转换效率却要低于后者。他们之前曾使用有机配体分子来维持纳米晶的稳定,但是有机配体分子的导电性很差,损害了纳米晶的转换效率。他们为此开发了一种合成配体来解决这个
问题。
纳米晶的表面涂料由硒化镉这种半导体所制成。研究者表示,因为该涂料所具有的毒性,所以液态纳米晶太阳能电池离商业化还有一段距离。但他们同时也表示自己已经找到了通往下一代太阳能光伏电池科技的光明大道。
太阳能电池中的半导体材料时,它们便会把这种能量转移给半导体电子,从而将其从静止状态激发,并形成电流。在许多情况下,紫光和紫外线的高能光子携带的能量要多于形成电流所需的能量。但是这些额外的能量都以热量的形式
损失了。
几年前,来自多个研究小组的科学家报告说,阳光中的高能光子实际上能够激发不止一个电子,前提是它们所碰到的半导体由一种名为量子点的纳米级微粒构成。这一过程被称为多重激子发生(MEG)为研究人员
(Xiaoyang Zhu)。朱晓阳和他的研究小组发现,有可能使每一个阳光光子产生的电子数量增加一倍,只需使用一种有机塑料半导体材料。 塑料半导体太阳能电池的生产具有很大的优势,其中之一就是成本低,化学教授朱