锡基钙钛矿太阳能电池具有多种优势,包括低毒性和接近理想的带隙。为了解决这些障碍,中国常州大学和扬州大学的研究人员重点关注了阻碍锡基钙钛矿太阳能电池性能的两个主要问题:不受控制的结晶和钙钛矿层内Sn的快速氧化。该团队制定了一种策略,通过在锡基钙钛矿中掺入具有多种官能团的添加剂盐酸S-苄基硫脲来提高TPSC的性能。
早期钙钛矿太阳能电池的一个问题是材料及其与电荷收集层的界面中存在高密度的缺陷,这扰乱了电荷流动并导致能量以热量形式损失。100多天后,新设计的电池保留了92%的性能,而对照设备仅保留了其初始性能的76%。在55°C下连续强光照射300小时的严酷测试中,新型太阳能电池保留了76%的性能,而对照器件则下降到47%。
“钙钛矿太阳能电池在太空中很有前途,但我们太阳系中的各种辐射源仍然是一个主要威胁—尤其是对使它们工作的有机分子,”萨里大学能源技术讲师、这项研究的合著者JaeSungYun博士说。研究人员认为,这种涂层可以开创太空太阳能的新时代,使其更轻、更便宜、更高效,最终实现更雄心勃勃、更可持续的太空任务。这一发展还可以使致力于建立天基太阳能发电系统以将能量传输到地球的公司受益。
导语钙钛矿太阳能电池的效率已媲美单晶硅电池,但长期稳定性问题阻碍其商业化进程。近日,研究团队在《AdvancedMaterials》发表重磅研究,设计了一类基于螺-吩噻嗪的新型空穴传输材料,其中氟功能化衍生物在小面积电池中实现25.75%的认证效率,25cm组件效率达22.07%,并在ISOS-L3老化测试中保持80%效率超过1000小时,性能与稳定性全面超越传统Spiro-OMeTAD!核心创新点分子设计突破:以螺-吩噻嗪为核心骨架,通过不对称引入萘基、氟代芳烃或芴基调控能级与热稳定性。
为了规避这些障碍,研究人员设计了一种新颖的选择性模板增长策略。这一进展的影响可能不仅仅是稳定PSCs;选择性模板生长框架为针对不同钙钛矿成分和器件架构量身定制的工程界面提供了一个多功能平台。重要的是,这种模板策略与现有钙钛矿组合物和制造方案的兼容性表明其可快速转化为工业过程。
随着器件老化,二维夹层会以不同的方式演变,从而改变器件的稳定性。在他们最近的研究中,研究人员开发了一种耐用的二维夹层,以提高2D/3D钙钛矿双层异质结构的效率和寿命。在实验中,他们使用了四种基于甲基铵的溶剂,甲铵是一种常用于生产钙钛矿太阳能电池的阳离子。研究人员发现,所有混合溶剂策略都产生了相纯二维钙钛矿。
上海交通大学的研究人员开发了一种新颖的低温顺序沉积方法,克服了倒置钙钛矿太阳能电池制造的关键限制。由此产生的具有改进表面的高质量钙钛矿薄膜可以加速电荷传输并增强器件的稳定性,有助于通过顺序沉积制造的含SAMs的倒置PSC实现最高的认证效率。LTSD策略证明了顺序沉积方法获得高效和稳定的反向PSC的可行性和潜力。科学家们认为,这项研究可以引起人们对顺序沉积方法的关注,并为分子设计提供新的机会,这将有助于PSC的商业化。
一种新技术使二氧化钛纳米棒能够以可调节的间距生长,从而在太阳能电池中实现更好的光捕获和功率转换。单晶TiO2纳米棒擅长收集光和传导电荷,使其成为太阳能电池、光催化剂和传感器的理想选择。当掺入低温加工的CuInS2太阳能电池中时,这些薄膜实现了超过10%的光电转换效率,峰值为10.44%。
IPN是一种聚合物,由两条或多条不同的聚合物链组成,这些聚合物链至少部分交织在一起,但彼此之间没有共价键合。不同种类聚合物之间的纠缠形成了IPN的均匀物理互锁,并且比单个聚合物组件在较宽的温度范围内具有更高的抗周围溶剂溶胀性和更好的机械强度。在最近的工作中,科学家们提出了一种简单的低温包埋策略,用于将三维IPN-氧化物纳米颗粒复合到PSCs上。随后,CeO2纳米颗粒被掺入IPN聚合物中,用于PSCs设备的封装。
全球化布局拓展生存空间,是全行业关注的焦点。为进一步突破能源电子各领域技术,提升产品供给能力,推动能源电子产业和新型储能产业高质量发展,工信部产促中心定于2025年7月至2025年12月组织实施第三届
能源电子产业创新大赛暨第四届先进储能技术创新挑战赛。其中,太阳能光伏分赛道的主题是“光伏引领,绿色赋能”,围绕光伏产业链各环节的痛点、难点、卡脖子问题的共性关键技术,面向未来的新概念、新原理、新方法的