组件功率衰减50%以上,从而影响整个组串的功率输出。高温、高湿、高盐碱的沿海地区最易发生PID现象。
造成组件PID现象的原因主要有以下三个方面:
1)系统设计原因:光伏电站的防雷接地是通过将方阵边缘
的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID
)熔断器烧毁,主要由于保险丝质量或选用的熔断器额定电流过小
2)断路器发热、跳闸
3)通讯异常(含汇流箱通讯采集模块损坏问题)
4)接线端子发热,主要由于端子松动,电阻过大)、
5)支路故障
,如接地故障、过流,出现直流拉弧等问题
上述5个问题的出现频率参考图2。
图2汇流箱常见故障
3、逆变器的主要故障
1)一般由于排风系统不良,机柜温度过高造成模块(主板)故障
2)模块自身
;
b.光伏组件中存在接线盒变形、扭曲、开裂或烧毁,接线端子无法连接等;
(3)光伏组件上的带电警告标识不得丢失。
(4)使用金属边框的光伏组件,边框和支架应结合良好,两者之间接触电阻应不大于4
,边框必须牢固接地。
(5)在无阴影遮挡条件下工作时,在太阳辐照为500W/m2以上,风速不大于2m/s的条件下,同一光伏组件外表面(电池正上方区域)温度差异应小于20℃。装机容量大于50kWp的
效应的风险增大;高的直流电压会使系统中能接触到潮气的带电体发生电化学腐蚀的概率增大。腐蚀的结果会破坏电池结构、增加接触和传输电阻,从而降低光伏组件的寿命、增加电功率损失,严重时甚至引发火险。第三,电压
光伏组件和光伏电池。比如采用低透水率的封装背板,采用抗Na+迁移的封装EVA材料,采用N型衬底的电池,在电池表面制备完美的钝化膜和保护膜,以及在电路上采取特殊的接地和隔离措施;第三,1500V系统需更加重视防拉弧设计。
电压高,对某些类型的光伏电池和光伏组件来说,发生PID效应的风险增大;高的直流电压会使系统中能接触到潮气的带电体发生电化学腐蚀的概率增大。腐蚀的结果会破坏电池结构、增加接触和传输电阻,从而降低光伏组件
荒漠化草原;第二,一般情况下,1500V光伏电站应采用抗PID效应的光伏组件和光伏电池。比如采用低透水率的封装背板,采用抗Na+迁移的封装EVA材料,采用N型衬底的电池,在电池表面制备完美的钝化膜和保护膜,以及在电路上采取特殊的接地和隔离措施;第三,1500V系统需更加重视防拉弧设计。
电化学腐蚀的概率增大。腐蚀的结果会破坏电池结构、增加接触和传输电阻,从而降低光伏组件的寿命、增加电功率损失,严重时甚至引发火险。第三,电压增高后当电路断开时,直流拉弧的风险也会增加。因此,第一,1500V
封装EVA材料,采用N型衬底的电池,在电池表面制备完美的钝化膜和保护膜,以及在电路上采取特殊的接地和隔离措施;第三,1500V系统需更加重视防拉弧设计。
的安全问题主要来自接线盒和热斑效应:
一、光伏组件接线盒质量问题评析
不起眼的接线盒是引起很多组件自燃的元凶,接线盒市场较为混乱和无序。劣质连接器由于内部粗糙不平,接触点较少,使电阻过高引燃接线盒
,达到30%以上,最高的衰减达到50%。传统抑制PID的方法是采用负极接地,但该方案存在极大的安全隐患,特别是渔光互补电站容易漏电导致触电,如果直接将负极接地,等于只要正极一旦对地漏电,作业人员和鱼类触电
等以安全的距离分别就近接到等电位接地排上。其接地电阻应小于4。接地电阻值难以达到要求时,可采取深井法、换土、添加降阻剂、外引等方式加以改善,但外引长度不应超过30m。 接地不可以接到建筑的引雷网上的,必须独立做接地。 铜包钢接地极施工 深井法施工
分散,主要依靠基础接地,必要时要使用降阻剂,降低接地电阻。临沂灯具批发2、吊装作业要严格遵守操作规程。特别要关注吊装设备周围的电网线路和其他线路,以及周边构筑物,吊装时吊点要合理,定位后要及时
、在岩层、风化石地段,分散接地和分段接地难以达到要求,可以考虑按设计要求的镀锌扁钢等导体通长连接,连接要可靠,同时加以合适的防护处理,并与预埋基础可靠连接,保证每根灯杆与地可靠连接。太阳能路灯中高杆灯较
、评估环境,通过载荷测试、强度测试以及运动性能及安全性测试评估、大电流高电压冲击测试、接地电阻测试、防水性能测试等方面对睿基跟踪系统进行了一系列非常严格且全面的安全性能评估,并对产品所涉及的设计过程
安装载荷等可靠性问题,提供一体化解决方案。
正在进行的接地电阻测试
睿基股份自成立之初就致力于跟踪系统开发,在智能跟踪行业具有领先优势,且行业经验超过10年,完成了一系列国内外高精尖光伏跟踪