毕业于河北大学微电子学专业,后留校任教做到了教授和系主任,研究方向主要是光伏材料。2000年,他赴澳大利亚新南威尔士大学,师从有“太阳能电池之父”之称的马丁·格林教授。学成归国后,入职老牌光伏企业
主流”的大讨论持续不停。今年8月,由中国光伏行业协会主办的 “2024
TOPCon太阳能电池技术发展趋势研讨会”在上海召开,包括一道新能在内的5家TOPCon阵营骨干企业,派出了各自的CTO或
新方法将电池的效率提高了约 15%,同时也使其对环境更加稳定。“尽管光电子特性很有前途,但事实上,由于氯和碘之间的半径不匹配,离子迁移在基于氯化碘的钙钛矿太阳能电池中是不可避免的,”Howlader
和他的团队在论文中解释说。“由于基于氯碘化物的钙钛矿薄膜中的离子迁移,可能会出现原子空位或原子积累等局部缺陷。”所讨论的活性钙钛矿层由 60% 的甲酰胺二铵 (FA) 和 40% 的甲基铵 (MA
最近,南京大学现代工程与应用科学学院谭海仁教授领导的团队在全钙钛矿叠层太阳能电池的研究上取得了重大进展。经过国际权威第三方机构的测试认证,他们研发的1.05平方厘米全钙钛矿叠层太阳能电池在稳定状态下
的光电转换效率达到了28.2%,这一效率创下了同类电池的世界新纪录,为全钙钛矿叠层太阳能电池的商业化生产提供了强有力的推动。这项突破性的研究成果已于2024年10月14日在《自然》杂志上发表,题为
太阳能电池的性能,从而获得更高效、更稳定的钙钛矿/有机叠层太阳能电池。通过比较这两种异构体对宽带隙钙钛矿薄膜的影响,作者旨在找到减少界面复合、增加开路电压和提高器件稳定性的最佳方法。
据研究人员称,这种新型电池采用宽带隙钙钛矿材料来捕获短波长阳光,并采用窄带隙有机活性层来吸收长波长太阳光线。钙钛矿高性能太阳能电池组件的示意图中国科学院化学研究所相关的一个国际科学家团队开发了下一代
近日,据国家知识产权局信息显示,天合光能股份有限公司申请一项名为“钙钛矿前驱体溶液、钙钛矿太阳能电池及其制备方法”的专利,公开号 CN 118785799
A,申请日期为2024年8月。专利摘要
显示,本申请实施例提供一种钙钛矿前驱体溶液、钙钛矿太阳能电池及其制备方法,该钙钛矿前驱体溶液包括钙钛矿材料、g‑C3N4类聚合物以及第一有机溶剂,其中:g‑C3N4类聚合物至少包括石墨相g‑C3N4
晶体硅与薄膜技术结合的独特优势,实验室效率已达到26.6%。其低温度系数特点使其在高温环境下依然表现优异,为光伏发电提供了稳定的性能。钙钛矿太阳能电池技术近年来获得了广泛关注,其实验室效率已突破28
年底,美国总共有 52 个光伏+电池混合电站,覆盖光伏发电量总计 5.3GW(AC),储能容量为 3GW/10.5GWh。 美国市场也以晶硅太阳能电池组件为主,该类组件在 2023 年的市场份额达到
新安装容量的 72%。相比之下,薄膜组件的年部署量创下了 5GW(AC) 的记录。 在 2023 年安装的集中式太阳能项目中,固定倾斜支架越来越多地应用于特别具有挑战性的场地,或东北部阳光最少的地区
更广。钙钛矿光伏电池的初级产品是一层层薄膜,其中钙钛矿层负责吸收阳光,产生“电子—空穴对”,电子传输层和空穴传输层分别负责“拉走”电子和空穴,让电子动起来,这样就能产生电流。前期研究中,课题组曾制备出
首先想到是薄膜不均匀导致的。按照传统思路,课题组优化了空穴传输层,改进了钙钛矿的结晶过程,但结果仍不尽如人意。“这说明问题可能出在电子传输层。”谭海仁说。经过2年的研究,课题组开发出一种混合两种分子的
近日,来自宁波科技大学、湖南工程学院、杭纳纳米制造设备有限公司和马来西亚沙巴大学的研究人员开发了一种具有基于铅碳负离子 (Pb–C)
的界面钝化器的倒钙钛矿太阳能电池–),据报道,该器件实现了
n
位于顶部。传统的卤化物钙钛矿电池具有相同的结构,但结构相反——“n-i-p”布局。在 n-i-p 结构中,太阳能电池通过电子传输层 (ETL) 侧被照亮;在
P-I-N 结构中,它通过
高效硅基光伏电池、钙钛矿太阳能电池等新一代高效低成本光伏电池制备及产业化生产技术,研发光伏逆变器及绝缘栅
双极型晶体管等新型太阳能光伏组件,研发、推动太阳能光伏板提效降耗新技术及光伏-光热-地热集成
绿色低碳转型支撑技术风光新技术。提高风光资源预测准确度和风光发电功率预测精度,提升风电、光伏发电主动支撑能力和适应电力系统扰动的能力;探索高效硅基光伏电池、钙钛矿太阳能电池等新一代高效低成本光伏电池制备及