,单晶硅和非晶硅也在用一些,其他的一般使用的还是比较少的。这是一个组件,由于单片的电池电压电流都比较小,通过把多块电池片并联起来,封装成一个模组,这就是光伏电池组件。这个是薄膜电池,这个是聚光型的,聚光型
。电压低、电流大,线损大转换效率低;MPPT数量少,导致不能发挥每块组件最大的功率,这是当前系统的两大缺点。那么如何把这两个问题解决掉呢?如何降低这两个缺点的影响呢?在2013年的时候,可能大家听的比较
元件在断开故障电流时,电压会一直存在,电弧持续燃烧,必须拉开足够的弧长距离才能够可靠熄弧。光伏场区分布面积大、电缆分布面积广、接线不良、电缆绝缘破损等都会引起拉弧。具有较高热能的电弧使得电站存在火灾
以及规避由此带来的安全隐患已经成为光伏电站业内一项刻不容缓的工作。
光伏电站安全风险因素主要分为光伏现场自然因素风险,光伏电站技术风险,安装风险,安全风险及材料风险五大方面。
一、光伏电站
。
1.1直流和交流线路对系统安全性能的影响
直流电特点是易产生拉弧故障且不易熄灭,存在无法扑灭的风险,因为只要有光照,就会有电流产生,危害性大;交流电由于存在过零点,即使发生电弧故障,电弧也
等级不同,交流断路器用于直流场景,则工作电压超出器件额定电压,长期使用会造成断路器功能失效,安全隐患大;其次,由于直流电压等级高,工作电流大,断路器切断过程易产生电弧,直流和交流特点不同,断路器灭弧装置
。可靠性问题,在设备选型和方案设计的时候,一定要慎重,否则后面就都是麻烦。现在,针对之前的大机项目,少则半个月,长则1个月,对直流电缆电流必须进行测试,发现不平衡,立即重新检修处理。也包括检查接头、压接等
。采用组串式后,这些部件都消失或者省掉了很多,也就不存在高故障率。那么剩下的只要把组件问题解决了,整个系统的问题也就解决一大半了。因为其他的电器设备,相比过去,可靠性有很大提高,除非你当时选的是低价劣质
3, 电站现场的组件不匹配影响质量:如电流分档不一致,一个阵列安装了不同品牌、型号的组件,导致不匹配损失过大,容易引起局部组件过热;不同连接器之间互相互联,接触电阻过大也是很大的风险
。
3.2.1.5屋面有采光带时需要做好安全标识和防护措施,不得违规踩踏。
3.2.1.6屋面运输施工材料及组件时,按照规定的施工通道行走。施工通道应做好防护措施,禁止有影响原有屋面结构安全性和使用
,坚决避免误操作,以防止机械伤害的发生。
3.2.4.4电线、电缆、电焊机具等应按规定摆放整齐,严禁乱拉、乱放。
3.2.4.5电焊机应设置电流保护装置和二次空载降压保护器。一次线的长度不能大于5m
光伏组件通过串联和并联的方式,形成一定规模的阵列,通过逆变器,实现一定功率的输出。众所周知,串联电路中电流取决于电流最小的那块电池,而并联电路的电压取决于电压最小的子串,即所谓的木桶理论。光伏组件
解析下影响光伏电站发电量的十大因素吧!1、太阳辐射量在太阳电池组件的转换效率一定的情况下,光伏系统的发电量是由太阳的辐射强度决定的。光伏系统对太阳辐能量的利用效率只有10%左右(太阳电池效率、组件组合
或并联起来,以获得所期望的电压或电流的。为了达到较高的光电转换效率,电池组件中的每一块电池片都须具有相似的特性。在使用过程中,可能出现一个或一组电池不匹配,如:出现裂纹、内部连接失效或遮光等情况,导致
不要发生人为混片现象。在焊接时要检查隐裂、虚焊和异物。
逆变器、汇流箱及运维部分
一、直流侧安全风险大、易起火
传统方案组件经直流汇流箱