的双重突破。产品通过创新技术应对电磁干扰挑战,为客户在新能源领域的技术布局提供核心支撑。l
ICS:莱姆电子带来的适用于车载充电机电流控制的霍尔及TMR电流传感器,具备高精度与高稳定性特性,可适配
高频碳化硅(SiC)和氮化镓(GaN)器件的OBC/DCDC场景。此外,莱姆电子还展出了磁通门电流传感器CAB 1500、CAB 500,多合一电流传感器HAH8DR、HAH3DR,单相电
-材料-器件-工艺及装备-组件”设置
5 个研究课题,其中一道新能是课题五“高功率稳定耐候光伏组件关键制备技术研究”的牵头单位,联合天合光能、长三角太阳能光伏创新中心等单位共同完成。项目课题5汇报
一道新能首席技术官宋登元博士表示,一道新能牵头的项目课题五,将与合作单位一起共同攻关高效率晶体硅太阳电池组件低应力光伏电池互联、层间低应力封装工艺,提升光伏组件的长期稳定性;通过多场耦合建模与大数据
界面可靠性是钙钛矿型太阳能电池长期稳定性的关键,而钙钛矿-衬底界面是高效器件中最脆弱的部分。鉴于此,华东理工大学郑伟中&吴永真&朱为宏&香港中文大学Martin
Stolterfoht在期刊
)和其他光电器件中的应用。2.优化聚合物结构:当前的研究表明,含有吡啶基团的聚合物在增强界面稳定性和光电性能方面具有显著效果。未来的研究可以进一步优化聚合物的结构,例如通过引入不同的官能团或调整共聚物的
。基于我们的调谐 SAM 的 WBG 钙钛矿器件实现了
22.8% 的功率转换效率 (PCE)。与晶体硅 TOPCon 子电池的集成进一步构建了 PCE 为 31.1%(认证为 30.9%)的钙钛矿
/TOPCon
串联器件。该论文近期以“Inductive effects in molecular contacts enable wide-bandgap
perovskite cells
钙钛矿/硅叠层太阳能电池的功率转换效率(PCE)已超过单结电池,但其记录效率仍低于理论最大值,且稳定性远低于晶硅太阳能电池。这些挑战主要源于开路电压(VOC)的显著损失和宽带隙钙钛矿器件的不稳定性
电荷提取效率。2.高效器件性能:单结钙钛矿太阳能电池实现1.273 V的高VOC和22.53%的PCE;叠层电池效率达31.26%,开路电压1.96
V,创下优异记录。3.卓越稳定性:未封装的叠层电池在氮气环境中连续运行1000小时后仍保持92%的初始效率,展现了优异的长期稳定性。
被观察到。通常,有机材料中的上转换发光称为多光子过程,并且效率较高,然而有机物的稳定性较差,限制了其在很多领域的应用。目前,稀土离子掺杂的无机材料的上转换发光过程研究较广泛,这主要是由于无机材料比较稳定
Shalav团队将镧系基太阳能上转换器从理论研究推进至实用器件开发,奠定了该领域的基础。2009年,Demopoulos团队首次在染料敏化太阳能电池(DSSCs)中采用LaF₃/Er纳米晶体,验证了
99%。与 TOPCon 硅基子电池集成后,叠层器件效率达 31.1%(认证 30.9%),FF 达
82.6%,为同类叠层系统最高效率之一。全共轭刚性分子结构的稳定性突破采用周边稠合多芳族芘核
构建 SAMs,其完全共轭骨架赋予分子强结构刚性和化学惰性。经 2500 小时加速老化测试后,器件效率保持率超 96%,显著优于传统
N - 取代 π 共轭 SAMs,为商业化提供了稳定性基础
了界面电荷分离,最终实现了26.21%的功率转换效率(PCE)。2) 此外,所获得的非封装器件具有良好的稳定性,在85°C连续加热应力下老化800小时、在50±3%相对湿度空气中老化1000小时和在连续1个太阳光照下老化1200小时后,保持了92%以上的初始PCE。
%。此外,有效面积为18.55 cm²的微型模块的效率达到21.72%,超过了控制器件的19.76%。此外,F-ISS策略显著提高了器件的稳定性,在最大功率点测试下连续照明1000小时后仍能保持初始
钙钛矿/硅叠层太阳能电池已显示出比单结电池更高的能量转换效率。然而,其记录的效率仍未达到理论最大值,且其稳定性明显低于晶体硅太阳能电池。这些挑战源于宽带隙钙钛矿器件的开路电压大幅损失和不稳定性,这
主要由异质结界面处的非辐射复合和降解引起。具体而言,氧化铟锡(ITO)与自组装单分子层(SAM)之间的弱粘附性,以及SAM与钙钛矿之间相互作用不足,导致了这种不稳定性。鉴于此,武汉理工大学李蔚,佛山市