来自日本立命馆大学和积水化学的研究人员研究了阻挡膜在保护柔性钙钛矿太阳能组件免受恶劣环境条件影响方面的作用。研究团队利用由甲基碘化铅铵 (MAPbI₃) 制成的 PSC 模块,这些模块用聚对苯二甲酸
室外条件。暴露 2,000 小时后,记录了组件的光伏 (PV) 性能,并通过电流电压、光谱反射率和电致发光特性确认了组件的退化。研究人员发现,高湿度导致 MAPbI₃ 层分解成碘化铅,从而阻止了跨层的
在追求高效稳定的钙钛矿太阳能电池的过程中,合理调节Me-4PACz/钙钛矿界面已成为一项重大挑战。鉴于此,2025年2月3日成都理工大学段玉伟&四川大学彭强于AM刊发利用基于甘氨酸铝的有机金属分子
实现高效的窄带隙和宽带隙反式钙钛矿太阳能电池的研究成果,开发了一种含有胺(-NH2)和铝羟基(Al-OH)基团的铝甘氨酸(AG)有机金属分子,以定制埋层界面并最大限度地减少界面驱动的能量损失。Al-OH
实现亚带隙光伏转换可有效缓解钙钛矿太阳能电池的能量损失并突破其理论效率极限。鉴于此,2025年1月30日山东大学尹龙卫于Angew刊发低维异质中间层使钙钛矿太阳能电池能够实现亚带隙光伏转换的研究成果
。2023-2024年,TOPCon成为光伏的主流技术路线。但HJT、BC、钙钛矿电池相对TOPCon具有更高的理论转换效率,也不排除未来有突破逆袭的可能。如果HJT、BC及钙钛矿电池成本、效率、良率进一步优化
EES刊发从20%单结有机光伏到26%钙钛矿/有机串联叠层太阳能电池:自组装空穴传输分子至关重要的研究成果,利用SAM的π共轭骨架与具有相反电势的挥发性固体添加剂之间的相互作用,增强了SAM层的有序堆叠
的成膜动力学产生了积极影响,改善了形貌和垂直相分离。结果,在PM6:BTP-eC9二元有机太阳能电池中实现了显著的20.06%的能量转换效率(认证值为19.24%),并在钙钛矿-有机串联太阳能电池(TSC)中进一步突破了26.09%的效率。
近期,南方科技大学理学院副院长、化学系教授许宗祥团队在钙钛矿领域取得一研究进展,与合作者在化学和材料、能源领域高水平期刊Nature
Communications发表论文。钙钛矿光伏技术以其
新型自组装(SAM)空穴传输材料并有效提升钙钛矿光伏器件效率和稳定性。进一步寻找新的 SAMs
设计方法是钙钛矿光伏领域的重要课题。近日,该课题组及合作团队报道了一种SAM空穴传输材料
、正泰新能源等光伏市场头部组件企业建立了长期稳定的合作伙伴关系,成为其电池采购的首选供应商之一。此外,钧达股份作为专业化电池厂商,持续开展TOPCon电池技术升级迭代,并积极研发储备下一代钙钛矿叠层、BC
索比光伏网获悉,1月24日,光伏板块在股市中呈现出显著的异动,其中钧达股份(002865)直线涨停,引发了市场的广泛关注。截至发稿时间(10点10分),双良节能(600481)、爱旭股份
13.84亿元,涵盖智能装备制造、新材料、新能源等多个领域,其中由北京炎和科技有限公司与常德高新区管委会签署钙钛矿新材料生产基地项目总投资约10亿元,主要生产钙钛矿光伏电池。2024年12月,炎和科技
近日,台湾省中央研究院携手台湾成功大学、台湾清华大学、台湾明志科技大学顶尖学者组成第三代太阳能电池研发团队,以2年时间成功开发出光电转换效率最高达31.5%的下一代钙钛矿/晶硅两端叠层太阳能电池
组件。中研院关键议题研究中心研究员朱治伟表示:2年前廖院长确定出方向后,便邀请院内外研究人员与学者专家组成团队,投入钙钛矿/晶硅叠层太阳能电池技术的研发,希望以更高效率的太阳能电池,满足台湾省日益增加的
一个欧洲项目旨在开发灵活的串联钙钛矿-CIGS 太阳能技术,以制造效率为 25% 的 100 cm2
组件,其中包含用于分散式太阳能光伏应用的各种基板。该项目需要使用可针对卷对卷生产的可扩展流程
。在早期研究项目中开发的CIGS设备 图片来源:Nikolaus Weinberger,University of Innsbruck一个欧洲财团正在开发基于钙钛矿和铜铟镓硒化合物(CIGS)的柔性叠