发电量持平,如表3所示。 表3实际电站集中式与组串式方案发电量对比(发电量取自35kV侧电表)(3)100MW电站,集中式25年运维成本节省超1000万元通过对比集中式和组串式方案在100MW电站的运维数据
)集中式方案设备数量减少10倍以上,电网接入更友好各领跑者项目基地规划电站容量均500MW以上,电站规模较大,因此,在调度响应、故障穿越、限发、超发、平滑、谐波限制、功率变化率、紧急启停等方面都有
组串式方案发电量持平,如表3所示。
表3 实际电站集中式与组串式方案发电量对比(发电量取自35kV侧电表)
(3)100MW电站,集中式25年运维成本节省超1000万元
通过对比
数量减少10倍以上,电网接入更友好
各领跑者项目基地规划电站容量均500MW以上,电站规模较大,因此,在调度响应、故障穿越、限发、超发、平滑、谐波限制、功率变化率、紧急启停等方面都有严格要求。相同容量
,集中式与组串式方案发电量持平,如表3所示。表3 实际电站集中式与组串式方案发电量对比(发电量取自35kV侧电表)(3)100MW电站,集中式25年运维成本节省超1000万元通过对比集中式和组串式方案在
跑者项目基地规划电站容量均500MW以上,电站规模较大,因此,在调度响应、故障穿越、限发、超发、平滑、谐波限制、功率变化率、紧急启停等方面都有严格要求。相同容量电站,组串式逆变器数量是集中式的10倍以上,且
光伏阵列方案对比:(1) 在不考虑逆变器超配的情况下,集散式逆变器方案比组串式单瓦造价水平低0.2元/Wp左右;(2) 在考虑1.15倍容配比的条件下,集散式逆变器方案比组串式单瓦造价水平低0.45元
/Wp左右;造成以上成本差异,一方面是因为当前组串式逆变器售价较高,每个逆变器功率较小,规模效应较差,而且数量较多,位置分散,通信、调度和控制的技术复杂;另一方面,集散式逆变器的容配比大,超配比
逆变器由于单机容量与单个组串容量比值大,过载能力强,可根据不同区域容量进行灵活配比,笔者了解到,大同领跑者光伏项目中集散式方案普遍超配,最大容配比为1.2,光伏电站投资收益进一步提升。6、电子熔断替代普通
熔丝,系统更加安全由于光伏组件的直流限流特性,即使发生输出短路情况也无法产生很大的短路电流,这就使得传统的熔丝等保护手段几乎起不到任何作用。集散式方案采用电子熔断器替代普通熔断器的方式,在MPPT
不同区域容量进行灵活配比,笔者了解到,大同领跑者光伏项目中集散式方案普遍超配,最大容配比为1.2,光伏电站投资收益进一步提升。 6、电子熔断替代普通熔丝,系统更加安全由于光伏组件的直流限流特性,即使
:逆变器=1.2:1是一个最佳的设计比例。上图所示,在主动超配的情况下,由于受到逆变器额定功率的影响,在组件实际功率高于逆变器额定功率的时段内,系统将以逆变器额定功率工作;在组件实际功率小于逆变器额定功率
电池板倾角(支架采用固定可调式)或加装跟踪设备(支架采用跟踪式)来增加倾斜面辐射量。下图对比了同一地区,不同安装方式,辐射量的差异。3逆变器容量配比逆变器容量配比指逆变器的额定功率与所带光伏组件容量的比例
逆变器额定容量。根据经验,在太阳能资源较好的地区,光伏组件:逆变器=1.2:1是一个最佳的设计比例。 上图所示,在主动超配的情况下,由于受到逆变器额定功率的影响,在组件实际功率高于逆变器额定功率
地区,光伏组件:逆变器=1.2:1是一个最佳的设计比例。上图所示,在主动超配的情况下,由于受到逆变器额定功率的影响,在组件实际功率高于逆变器额定功率的时段内,系统将以逆变器额定功率工作;在组件实际功率
光伏组件效率提升带来的光伏电站成本降低可以期待。3技术的进步光伏系统电压从1000V上升到1500V,预计可以使BOS成本下降约30%,光伏系统成本下降约10%。光伏组件相对于后端电气系统超配20