传统平面咔唑基自组装空穴选择层(SAMs)在钙钛矿太阳能电池(PSCs)应用中存在电势、热和光辐照稳定性不足的缺陷。本研究开发了具有螺旋手性结构的氮杂螺烯磷酸衍生物(A5HPA和A7HPA),其独特的非平面π共轭体系赋予材料优异的本征稳定性,可耐受热老化、光浸泡和电化学氧化。A7HPA分子的P/M对映体因螺烯骨架的高扭转度和分子自洽性,会形成类似"齿轮啮合"的交替堆叠结构,这种排列模式通过增强分子间π-π相互作用和共轭效应,显著提升了空穴传输层的结构刚性。基于A7HPA制备的单结宽禁带PSC和钙钛矿-硅叠层电池分别实现了23.41%和33.06%(认证效率32.57%)的功率转换效率,并在湿热老化与光热协同应力测试中展现出卓越的长期稳定性。

图1 手性氮杂螺烯磷酸衍生物的设计与堆叠模式
a)、f)、k) 3PACz(a)、A5HPA(f)和A7HPA(k)的分子结构
b)、g)、l) 母核化合物MCz(b)、A5H(g)和A7H(l)的分子结构
c)、h)、m) 3PACz(c)、A5HPA(h)和A7HPA(m)的单晶堆叠模式
d)、i)、n) 3PACz(d)、A5HPA(i)和A7HPA(n)的HOMO能级计算值
e)、j)、o) 3PACz(e)、A5HPA(j)和A7HPA(o)的静电势偶极矩分析
图2 材料在电势与光照下的本征稳定性
a)、b)、c) 3PACz(a)、A5HPA(b)和A7HPA(c)的循环伏安曲线(20次循环测试)
d)、e)、f) 单电子氧化生成的阳离子自由基稳定性:3PACz(d)、A5HPA(e)、A7HPA(f)
(图示说明:红色标记原子为单电子云密度高的自由基位点)
g)、h)、i) 3PACz(g)、A5HPA(h)、A7HPA(i)的自旋密度计算
(等值面水平分别取0.02和0.01|e|/ų以可视化自由基电子分布差异)
j)、k)、l) 3PACz(j)、A5HPA(k)、A7HPA(l)溶液在1倍太阳光照射48小时后的1H NMR谱图对比

图3 材料本征热稳定性研究
a)、b)、c) 3PACz(a)、A5HPA(b)和A7HPA(c)在热应力下的变温固态核磁共振谱
d)、e)、f) 光热应力作用前后ITO基底上3PACz(d)、A5HPA(e)、A7HPA(f)的C 1s区XPS谱对比
g)、h)、i) ITO/SAM/钙钛矿界面区PO₃⁻信号的二次离子质谱二维成像
(纵轴为溅射时间,间接反映样品深度;z轴为PO₃⁻碎片二次离子强度,表征其空间分布丰度)

图4 分子薄膜电子特性与光伏性能
a) UPS谱测得的SAMs功函数(WF)
b) UPS谱确定的SAMs HOMO能级/价带顶(EVBM)截止区
(所有样品沉积于平面ITO基底)
c) SAM/钙钛矿界面能带示意图
d) ITO/SAM基底上钙钛矿的瞬态荧光(TRPL)衰减曲线
e) TRPL数据拟合的微分寿命(插图为瞬态早期上升段放大,反映钙钛矿向SAMs的空穴转移)
f) 基于三种SAMs的1.68 eV宽禁带钙钛矿单结PSCs器件性能
g) A7HPA基钙钛矿-硅叠层电池截面SEM图像
h) 最优叠层电池的J-V曲线
i) 最优叠层电池的外量子效率(EQE)谱

图5 器件稳定性研究
a)、b)、c) 1.68 eV宽禁带PSCs在不同温度下的最大功率点跟踪(MPPT)测试
(氙灯光源,1倍太阳光强度,测试温度:30℃(a)、55℃(b)、80℃(c))
d) 钙钛矿-硅叠层电池在85℃下的MPPT测试(LED光源,1倍太阳光强度)
e) 五组叠层电池器件的平均J-V参数统计
器件制备
单结钙钛矿太阳能电池制备
太阳能电池采用ITO/SAM/钙钛矿/PI/C60/BCP/Ag的层状结构制备。首先配制钙钛矿前驱体溶液:将1.2 M FAPbI3、0.225 M MABr、0.35 M PbBr2和0.075 M CsI溶解于1 mL DMF:DMSO(4:1 v/v)混合溶剂中。溶液在室温下搅拌4小时以确保完全溶解和均一性,随后通过0.45 μm聚四氟乙烯(PTFE)针式过滤器过滤以去除未溶解颗粒,得到具有目标带隙的前驱体溶液。
随后开始器件制备。15×15 mm²氧化铟锡(ITO)玻璃基底依次在去离子水、乙醇、丙酮和异丙醇中各超声清洗5分钟。超声清洗后,用热风枪干燥基底并进行15分钟紫外臭氧处理。随后将基底转移至充满氮气的手套箱中。将SAM分子(3PACz、A5HPA或A7HPA)溶解于无水乙醇(≥99.8%)或四氢呋喃中,浓度为1-2 mM,通过0.2 μm PTFE过滤器过滤后,以3000-5000 rpm转速旋涂30秒于清洁的ITO基底上。SAM涂覆的基底随后在100℃下退火10分钟。
在SAM功能化的ITO基底(3PACz、A5HPA或A7HPA)上通过两步旋涂工艺沉积钙钛矿薄膜。前驱体溶液以1000 rpm旋涂10秒(加速度),随后以5000 rpm旋涂30秒,并在第15秒时滴加200 μL氯苯反溶剂。薄膜在氮气氛围下100℃退火10分钟。随后通过旋涂70 μL 0.3 mg/mL PI异丙醇溶液(5000 rpm,30秒)引入钝化中间层(PI),并在100℃退火10分钟。
对于电子传输,依次通过热蒸发在高真空(2×10⁻⁶ Torr)下沉积20 nm C60层和6 nm BCP中间层。最后通过热蒸发通过掩模图案化沉积100 nm厚的Ag电极完成器件结构。
对于简化的纯FAPbI3配方,将1.5 M FAPbI3和15%质量分数的MACl溶解于DMF:DMSO(8:1 v/v)混合溶剂中,随后进行相同的搅拌和过滤步骤(如前所述)。
硅异质结太阳能电池制备
硅片选择:从n型单晶硅片(直拉法生长,200 μm厚度,⟨100⟩晶向,1-5 Ω·cm电阻率)开始。
清洗:将硅片浸入RCA-1溶液(5:1:1 H2O:H2O2:NH4OH,75℃ 10分钟),随后RCA-2溶液(5:1:1 H2O:H2O2:HCl,75℃ 10分钟)以去除有机/金属污染物。用去离子水冲洗并在N₂下干燥。
织构化:在2 wt% KOH和5%异丙醇(IPA)溶液中80℃蚀刻30分钟形成随机金字塔结构(高度约3 μm)。蚀刻后进行2% HF浸渍以去除氧化物残留。
本征层(i-a-Si:H):使用等离子体增强化学气相沉积(PECVD)在200℃下,13.56 MHz射频功率。气体前驱体:10 sccm SiH4和100 sccm H2;压力维持在300 mTorr。沉积5 nm本征层以钝化硅表面。
p型a-Si:H:引入1% B2H6在H2中(500 sccm)与SiH4/H2(50/500 sccm)在180℃,400 mTorr下形成10 nm层。
n型a-Si:H:使用1% PH3在H2中(500 sccm)与SiH4/H2(50/500 sccm)在180℃,400 mTorr下形成10 nm层。
透明导电氧化物(TCO)沉积:使用3 kW射频功率在3 mTorr Ar气氛(20 sccm)下溅射15 nm氧化铟锡(ITO)。
背电极:通过丝网印刷(250目,30 μm线宽)使用Ag浆料(ANP公司)印刷Ag栅线,随后在带式炉中200℃固化30分钟。
钙钛矿-硅叠层太阳能电池制备
首先配制钙钛矿前驱体溶液。通过将FAPbI3、MABr、PbBr2和CsI溶解于无水DMF:DMSO(4:1 v/v)溶剂体系中制备1.7M Cs0.05FA0.8MA0.15PbI2.29Br0.70前驱体溶液。溶液在室温下搅拌4小时以确保完全溶解和均一性,随后通过0.45 μm PTFE针式过滤器过滤以去除未溶解颗粒,得到具有目标带隙的前驱体溶液。
随后,将带有15 nm厚ITO复合层的硅异质结(SHJ)底电池通过旋涂异丙醇清洗30秒,随后退火1分钟并进行15分钟紫外臭氧处理,之后立即转移至N2氛围的手套箱中。将SAM分子(3PACz、A5HPA或A7HPA)溶解于无水乙醇(≥99.8%)或四氢呋喃中,浓度为1-2 mM,通过0.2 μm PTFE过滤器过滤,以5000 rpm转速旋涂30秒于清洁的硅基底上,随后在100℃退火10分钟。
将100 μL前驱体溶液以2500 rpm旋涂30秒,随后以7000 rpm旋涂10秒。在旋涂过程中,在旋转完成前10秒滴加250 μL氯苯于薄膜上。所得钙钛矿薄膜立即在100℃退火15分钟。随后将0.4 mg/mL PI异丙醇溶液以5000 rpm旋涂30秒于钙钛矿薄膜上,并在100℃退火10分钟。
随后通过热蒸发以0.2 Å/s沉积速率在钙钛矿薄膜上沉积10 nm厚C60层。在C60层上使用原子层沉积(ALD)在PE ALD-F50R(KE-MICRO)系统中90℃下沉积约12 nm SnOx缓冲层。沉积过程包括100个循环,使用TDMASn前驱体(80℃,90 sccm,1秒脉冲,6.0秒吹扫)和H₂O(90 sccm,1秒脉冲,6.0秒吹扫)。
随后通过掩模在SnOx层上溅射氧化铟锌(IZO),在平面玻璃上厚度为80 nm。最后在高真空下以1 Å/s沉积速率热蒸发500 nm厚银电极和110 nm厚MgFx层。
原文:https://doi.org/10.1002/ange.202509279
索比光伏网 https://news.solarbe.com/202508/6/50005561.html

