去年夏天,公司在新西兰首次尝试放飞超压气球,如果Lindstrand在场,他可能会笑掉大牙。在处女秀中,气球在起飞不久后爆炸,尼龙织物被球内10万磅高压撑破。第二次试飞同样遭此厄运,第三次直至接下来五十次都是如此。团队不停的调整织物,并用更多的合成纤维类绳索进行加固,但气球仍然爆炸,直至他们精确掌握了绳子的长度。“我们知道制造超压气球很难,” Cassidy回忆到,“我们当时真没想到要尝试61次才会成功。”
即便如此,成功也是转瞬即逝。气球不再爆炸,但里面的氦气开始缓慢泄露,刚飞行一到两天,气球就下降。“即使毫厘大小的漏洞也会迫使气球飞行数天后下降,” Cassidy说,“我们接下来制造的40-50个气球,都出现了这个问题。”
谷歌的工程师们花了几周时间来解决此问题。他们在位于山景城莫非特基地的机库里将气球开箱充气,然后用偏振光照透球面,甚至还动用质谱仪来嗅探氦气的泄漏。他们对每个掉落的气球都进行了“故障分析”,细致查看关于装配人员、地点、工具和运输过程的详细记录。
泄漏的原因最终被确定为两类问题。一是由运输过程中对气球的多次折叠造成的,重复的折叠使得一些气球在折角处产生了细小裂隙。谷歌已着手找到能够将压力均匀分布在球囊面料上的折叠和卷收方法。第二类问题是当工人用脚踩压球囊面料时袜子将气球轻微撕裂了。这可以用绒毛软袜来解决,Cassidy说,“确实不一样。袜子越软,泄漏越少。”
随着工作团队将泄漏减少,气球的飞行时间逐渐变长——从四天到六天,然后增加到一次飞行持续几周。就11月的情况看,Cassidy说,有三分之二的气球可以在空中飞行100天以上。
但让气球保持飘浮状态只是这项工程遇到的第一个代表性问题。如何让气球保持在轨道上飞行才是更加困难的。
当谷歌第一次宣布这项工程时,我拍到了颜色明亮的装置悬停在目标村落上方成百上千英尺的地方,用可能是世界上最长的绳索将其连接。这项工作在现实执行中会更复杂,但景象也更迷人。
首先,气球离地升空超过60000英尺,到达平流层,并超过所有飞机的飞行高度,高到在地面上几乎看不到它们。此外,这些气球装置无法在预定位置悬浮。它们被平流层时速高达100公里/小时的气流持续吹着移动,让原本计划通过定位装置提供稳定数据服务的想法彻底泡汤。
谷歌对此提出的应对方案是在空中同时部署一大群气球,其中一些沿着其他气球的航迹移动。通过这种方式,一旦其中一个气球即将离开设定区域,另一个气球恰好会到达这一区域,它们共同保证了连结信号始终处于活跃状态。
谷歌轻描淡写的用这个精妙的办法就使得高性能飞行器(即气球)能够精确在轨道上运行。但这些都是低功率气球,没办法直接控制他们的轨迹。你所能做的只能是调整它们的高度。对气球的操控就是根据不同海拔的风速和方向,操纵气球上下移动以捕捉到那些能够让气球在所需轨道上运行的一连串气流。
下一页>