随着环境污染日益严重以及能源危机的加剧,清洁的可再生能源在电力系统中占的比重也越来越大,太阳能凭借其独有的优势成为新能源首选。因此,了解光伏发电系统的发电原理以及提高发电效率的方法是非常重要的。这里介绍了一个针对并网型光伏发电系统的MPPT算法。该系统采用单级式结构,省去了储能环节,拓扑结构简单,且效率高。
众所周知,光伏电池板作为光伏系统里很重要的组成部分,是整个系统能量的来源,不可或缺。但光伏电池容易受到外界温度、日照强度等环境因素的印象,使得其输出功率始终在发生变化。为了充分利用太阳能电池板并使系统能尽可能地稳定工作,光伏并网系统中最大功率跟踪技术的加入便显得十分必要。从电子系统方面考虑,对光伏组件进行最大功率点跟踪是降低发电成本、提高发电效率的最直接、最有效的方法。
1、光伏电池输出特性分析
光伏电池受外界因素(如环境温度、日照强度等)影响,输出具有强烈的非线性,其数学模型可表示为:
式(1)也即光伏电池的I-U特性关系,其中:I、U分别为光伏电池输出电流和端电压;A、B与PN结材料特性相关的系数;k为波兹曼常数;T为绝对温度;q=1.602*10-19C为电荷电量;Rs、Rsh为别为等效串联电阻和等效并联电阻。
将式(1)转化为工程化数学模型,并加入适当补偿银子,可建立光伏电池的软件仿真模型,对于该模型本文采用PSIM仿真软件来建立,并结合MATLAB软件对该模型的可用性和正确性进行验证,仿真结果如图1所示。
图1 太阳能电池仿真模块光伏特性曲线
由图1中的四张图我们可以得出如下两条关于光伏特性的结论:
(1)在光伏电池结温不变的情况下,光伏电池的输出最大功率随日照强度的增强而增大,且最大功率点对应的电压几乎相同;在日照不变的情况下,太阳能电池的输出最大功率随组件结温的升高的变化趋势与恒温日照变大情况下功率变化趋势相反,结温越大,太阳能电池能输出的最大功率反而越小,且最大功率点对应的电压也随着结温的升高而下降。
(2)在光伏电池结温不变的情况下,日照强度越大,光伏电池的短路电流也越大,恒流区对应的端电压区间也越小;在日照不变的情况下,光伏电池的结温几乎不对短路电流产生影响,随着温度的上升极板的输出短路电流只是略有增加,而光伏电池的开路电压则随着电池结温的升高而下降,且下降幅度较大。