钙钛矿(perovskite)是德国矿物学家古斯塔夫˙罗斯(GustavRose)在1839年,于俄罗斯中部境内的乌拉尔山脉上发现钙钛矿岩石样本,决定以他心中伟大的地质学家LevPerovski来命名这种矿石[4]。该矿石是普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3)。后来人们所指的钙钛矿电池,并不是用他发现的这种矿石材料制成的,而是使用了与钙钛矿晶体结构相似的化合物。
钙钛矿晶体结构示意图
钙钛矿的结构是ABX3的形式。这种结构在每个角共享一个BX6正八面体,其中B是金属阳离子(Sn2+或Pb2+),X是一价阴离子(Cl-,Br-或I-)。钙钛矿中的阳离子A被用来抵消电荷使材料达到电中性,它可以是半径较大碱金属离子等,甚至可以是一个分子。这种奇特的晶体结构让它具备了很多独特的理化性质,比如吸光性、电催化性等等,在化学、物理领域有不小的应用。钙钛矿大家族里现已包括了数百种物质,从导体、半导体到绝缘体,范围极为广泛,其中很多是人工合成的。太阳能电池中用到的钙钛矿(CH3NH3PbI3、CH3NH3PbBr3和CH3NH3PbCl3等)属于半导体,有良好的吸光性。
5年时间,从3.8%到19.3%
2009年时,桐荫横浜大学的宫坂力(TsutomuMiyasaka)率先通过将薄薄的一层钙钛矿(CH3NH3PbI3和CH3NH3PbBr3)当做吸光层应用于染料敏化太阳能电池,制造出了钙钛矿太阳能电池。当时的光电转换率为3.8%。后来研究者对电池进行了改进,转换效率一下翻了一倍。虽然转换效率提高了,但还要面对一个致命问题——钙钛矿中的金属卤化物容易在电池的液体电解质发生水解,导致电池稳定性低,寿命短。[6]
2012年8月,由格拉兹尔(Grätzel)领导的韩国成均馆大学与洛桑理工学院实验室将一种固态的空穴传输材料(holetransportmaterials,HTM)引入太阳能电池,使电池效率一下提高到了10%,而且也解决了电池不稳定的问题,新型的钙钛矿太阳能电池比以前用液体电解液时更容易封装了。这之后,钙钛矿太阳能电池成为了新的研究热点。