研究人员始终在探索解决这个问题的一系列对策。除了不断改进燃料电池的质量外,还有多种新颖的方法正在酝酿之中,例如澳大利亚新南威尔士大学的研究人员最近利用纳米硼氢化钠进行存储。盐按惯例必须加热到550℃才会释放存储在化学键中的氢,但它在纳米尺度下经过诱导达到50℃时就会这么做。这对于按多种规格携带氢来说是一个大有前途的进展。
虽说大有前途,但未必有这个实际需求。就地存储、燃烧起来像篝火的简装氢气罐也有异曲同工之妙。太阳储能公司经理布赖恩·霍尔科洛夫特认为,这正是它可望在像肯尼亚那样阳光明媚、但能源基础设施匮乏的国家立即找到的用武之地。他和瑞士理工学院合作的结果,是利用串叠型电池和二氧化铁设置为公司提供了非电网式的能源解决方案。他希望这些装置同样能推广到发达国家的房屋顶上,使拥有这种装置的人不必通过电网就能获得氢燃料和电力。
也许,它们并不需要串叠型电池。数十年来对
铁锈电子诱导水裂变这个过程的洞察,确保了哈迪和巴德独辟蹊径的梦想必定会从过去一直延续到未来,靠的是效率不见得高超、但配备以相应储能设施的铁锈光电装置。
“如果全然不在乎效率的话,那么铁锈电池是可以通过运作而制造燃料或发电的,也可以同时兼顾两头。”卡茨说,“它可以在白天电力需求达到高峰时发电,需求不高时则代之以燃料生产。”考虑到
太阳能的经济现实,哈迪和巴德在1975年开掘的细微电流还可能衍变成一种覆盖全球范围的再生能源。也许,现在该是进入“铁锈时代”了。
索比光伏网所转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe
投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com
扫码关注