利用太阳能发电采暖,是节能减排、减少雾霾污染的有效途径之一。然而,困扰太阳能发电最棘手的问题之一是黑夜,随着雾霾天气的增多,即便是白天的太阳能应用也受到了挑战。在这种背景下,一种极普通的物质——铁锈,成了国际科技界关注的新宠。只要能让铁锈的电子行动自如,它就能变成一种神奇的材料,为廉价地进行太阳能发电提供有效的途径。
突破太阳能应用瓶颈神奇物质进入研究视野
电极上哪怕生出零星的铁锈,都会让大多数工程师感到惊慌失措。但是,肯尼思˙哈迪和艾伦˙巴德这一对伙伴却利用这种最廉价的材料,探寻出了廉价的太阳能发电方法。他们大致的原理是对铁锈进行电流诱导,制成电极,只要接触到微弱的可见光,电极就会产生功率虽小、但仍可利用的电流来。
这段插曲发生在1975年,其时正值硅作为新兴材料的“佼佼者”脱颖而出的时期。硅的非凡效率使它成为太阳能光伏电池的支柱,从那时以来一直在市场上独占鳌头,铁锈压根儿就没有堪与比肩的电气性质。在德克萨斯大学取得的小小突破被束之高阁,人们想到铁锈的唯一场合,是他们发现有必要予以清除的时候。
但是,在过去几年里,聚光灯重又开始投射到这种神奇的物质上。虽然在将太阳能转变为电力的效率方面,二氧化铁(铁锈)无法和硅相提并论,但是它能做一些硅做不到的事,例如帮助太阳能的储存。困扰太阳能发电最棘手的问题之一是黑夜,而呈薄片状的铁锈也许正能在突破这一瓶颈制约上发挥作用。
太阳能研究差不多一味将注意力投注到效率上。太阳每天使地球沐浴在够我们消耗一年的能量之中,但收获这份“上苍恩赐”却不是一件轻而易举的事。即使是现有的最先进技术也只会将46%的太阳能转变成电力,而且那还有赖于规范化的理想条件,国际空间站斥资数十亿美元用代价高昂的稀土元素制成的太阳能电池板便是一例。安置在地面上基于硅的、更加廉价的太阳能光电板,其效率充其量也只有15%~20%。
现在迫切需要的是设法将多余的能源存储起来,以便在没有阳光照耀之际可供使用。在某种程度上正是因为只能在生成瞬间使用的缘故,这种表面上看似无穷尽的资源在所有再生能源中所占的份额是微不足道的,而成本却是化石燃料的20倍。
最显而易见的解决方案是电池,但由于能源密度偏低,加上整幢建筑的供电系统每过几年需要更新的高额成本,使它们只成为少数富人的选项。一个稳妥得多的太阳储能办法是用它来制氢。这个元素的化学键称得上威力无比,每公斤的存储容量是标准锂离子电池的170倍。此外,氢还是名副其实的“多面手”,你一旦将它捕获就可以付诸任何用途。如果融入燃料电池,它就可以和氧重新结合而按实际需要发电;它和一氧化碳结合后会变成甲醇生物燃料;存储得法,甚至还会像任何其他气体燃料那样燃烧。
要将光伏电池的动力转变为氢,最简单的办法是利用该动力来运转电解槽,藉以让水(H2O)裂变为氢和氧。简单或许是简单,但也不见得怎么有效。在标准光伏电池所能捕获的仅为15%的太阳辐射中,另有30%会在转换过程中丢失。等你忙完这一切的时候,恐怕还是配备可充电的电池来得划算。
铁锈“库存量”丰富经电解获取水中动力
更加稳妥的选项是物色一些廉价的导电材质,它们既能完全绕过光伏电池,又能简单易行地用太阳的光子来电解水和制造氢。
要让一种材料直接对水进行电解,它必须在受到光子撞击时释放具有合适能量的电子。当这些电子受到足够的激励而撤离材料时,它们会残留下称之为洞孔的缺口。为了填补这些洞孔,水分子会捐出属于它自身的一个电子。这样一来,电子和洞孔就会通过相互配合而使水得以氧化并转变为氢和氧。
硅不是适宜干这活儿的工具,它的电子缺乏合适的能量。所有的材质需要各自不同、准确无误的能量才有望让电子挣脱原子的束缚。硅原子只需要1.11eV(电子伏特)即可松开一个电子,但是促成水裂变则要求电子至少达到1.23eV的能量。
对于实际中迫切需要的材料,可以用异质化合物来研制。例如美国博林格林州立大学的工程师将硒化锌和硫化镉晶体同铂催化剂相结合而使合适的电子得以释放。但复杂的工艺和稀缺的材料孕育而成的装置,因商业化成本过高而难以应用。
于是,研究人员开始将目光重新投向铁锈。二氧化铁具有高达2.1eV的能源“命中率”,它还不带任何毒性,而且非常便宜。更为重要的是,它的“库存量”简直丰富到无所不在的地步。