自2024年1月11日,150MW钙钛矿量产线竣工投产以来,经历10个月效率爬坡,仁烁光能1.2*0.6 ㎡单结钙钛矿组件,经中国计量院认证,全面积(0.72㎡)转换效率达19.27%!(计算有效面积效率21.36%),创造商用钙钛矿组件新的世界纪录!
钙钛矿/硅串联太阳能电池因其高功率转换效率(PCE)和成本效益而备受瞩目,被视为太阳能光伏领域的重要候选技术。然而,实现在空气中可扩展制造宽带隙钙钛矿(约1.68 eV)而不在惰性气氛保护环境下,由于钙钛矿薄膜受潮引起的降解,这一挑战仍然存在。
太阳能作为未来的能源,在下一代产品中引起了人们的关注(HPBC、TBC、HBC)HPBC是太阳能电池技术发展的一个方向。HPBC电池与钝化发射极和背面钝化接触技术相结合(PERC)采用背接触设计的优点。这种结构通常在电池的背面形成钝化接触,以减少正面屏蔽,改善光吸收。
11月27日,国家知识产权局公布的信息显示,杭州福斯特应用材料股份有限公司申请一项名为“封装胶膜和异质结电池组件”的专利,公开号CN 119019945 A,申请日期为2024年8月。
一个国际研究小组开发了一种基于甲基取代咔唑和亚微米级纹理硅底部异质结电池并采用空穴传输层的钙钛矿硅叠层太阳能电池。他们提议的电池配置使用市售的Czochralski硅片,预计效率将超过30%。
近日,经中国计量科学研究院权威认证,曜能科技自主研发的单片M6规格钙钛矿/晶硅串联叠层电池组件转换效率达到27.22%。
近日,仁烁光能量产的钙钛矿组件(尺寸1200mm*600mm),获得美国可再生能源国家实验室(NREL)稳态效率测试认证,组件的全面积稳态效率达17.2%(对应有效面积效率19.3%),是商用钙钛矿组件全球首次且行业唯一的国际权威认证,该世界纪录效率被最新一期《Solar Cell Efficiency Tables》收录(Version 65)。同时,仁烁光能研制的全钙钛矿叠层光伏组件效率再创新高至24.8%(日本JET认证,面积放大至65 c㎡)。
近日,协鑫光电刘秋菊博士团队在国际顶级期刊Angew. Chem. Int. Ed.上发表一项重磅研究成果,通过优化钝化层,显著提升了钙钛矿太阳能电池的转化率和稳定性,标志着协鑫光电在钙钛矿技术核心三维度── “高-大-稳”上又进一步。
11月20日-22日,12thbifiPVWorkshop2024 Zhuhai国际峰会将在珠海隆重举行。会上,爱旭股份董事长陈刚谈及光伏未来技术时指出,下一代技术的发展方向主要有两个:光子倍增和钙钛矿叠层。然而,无论选择哪种方向,都离
最近,隆基绿能、苏州大学、香港理工大学、华能等机构合作在《自然》(Nature)上发表研究称,他们设计的太阳能电池经美国国家可再生能源实验室(NREL)认证,光电转换效率达到近33.9%,再次刷新了太阳能电池的世界纪录。更重要的是,这不是常用的单结太阳能电池(如硅太阳能电池),而是一种将钙钛矿与硅太阳能电池有效结合在一起的双结叠层太阳能电池。
浙江大学李昌治&吉林大学张立军在期刊《Advanced Materials》发文,题为"High-Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization"。本文提出了一种原位钝化(ISP)方法来有效调节晶体生长动力学并获得具有钝化边界和界面的良好取向的钙钛矿薄膜,成功地为高性能反式钙钛矿太阳能电池开辟了新途径。
2024年11月6日南开大学姜源植&袁明鉴于AM刊发管理低维钙钛矿的边缘态以实现高效深蓝色LED的研究成果,报道了一种通过引入三(4-氟苯基)膦(TFP)配体来管理边缘态晶格的方法。由于TFP配体具有较大的空间位阻及其与边缘悬挂八面体的强结合亲和力,边缘八面体倾斜重构可以有效抑制晶格振动并抑制EP耦合。
在光伏领域风起云涌的今天,纤纳光电以其独树一帜的技术创新,不断推动钙钛矿产业化向前突破。2024年10月,公司自主研发的冷冻激光修复技术成功助力钙钛矿小组件实现了23.65%(正反扫平均值)的效率并取得福建省计量科学研究院认证证书。
2024年11月4日浙江大学余学功&杨德仁&苏州大学杨新波&张晓宏&阿卜杜拉国王科技大学Stefaan De Wolf于Nature Photonics刊发绒面硅上共沉积硫氰酸铜和钙钛矿制备高效稳定的钙钛矿/硅串联叠层太阳能电池的研究成果,通过硫氰酸铜(I)和钙钛矿的共沉积来解决这些挑战,其中通过嵌入的硫氰酸铜(I)同时实现有效的钙钛矿晶界钝化和有效的空穴收集,从而形成局部空穴收集接触。制造的单片钙钛矿/硅串联叠层器件在1 cm2面积器件上实现了31.46%的经认证功率转换效率。除了良好的再现性和可扩展性
非富勒烯有机太阳能电池的光伏性能本质上是由电荷陷阱的存在决定的。然而,它们在有机太阳能电池中的确切分布仍不清楚。鉴于此,2024年10月30日南京大学陈尚尚于Joule刊发非富勒烯有机太阳能电池中陷阱态的分布和演化的研究成果,报告了通过驱动级电容分析(DLCP)方法成功地分析了陷阱态的空间和能量分布。