针对这一问题,青岛大学薄志山团队创新性地在苯并三噻吩单元中引入氯原子与酯基,构建了新型电子接受单元BCE。研究意义效率突破:PBCE-2:L8-BO二元体系效率达19.2%,引入PCBM后三元体系效率突破至20.4%,创下新型聚合物给体效率新高。结论展望本研究成功设计并合成了基于BCE单元的新型宽禁带聚合物给体PBCE-2,通过侧链工程与三元共聚精准调控其能级与聚集行为,最终在二元与三元OSC中分别实现19.2%与20.4%的高效率。
此外,锂螯合作用固定了水分子,减缓了湿气侵入。结构优化与性能提升:Li螯合使π–π堆积距离缩短,聚合物结晶度提高,空穴迁移率显著增强,器件效率从11.8%提升至13.7%。
IPN是一种聚合物,由两条或多条不同的聚合物链组成,这些聚合物链至少部分交织在一起,但彼此之间没有共价键合。不同种类聚合物之间的纠缠形成了IPN的均匀物理互锁,并且比单个聚合物组件在较宽的温度范围内具有更高的抗周围溶剂溶胀性和更好的机械强度。在最近的工作中,科学家们提出了一种简单的低温包埋策略,用于将三维IPN-氧化物纳米颗粒复合到PSCs上。随后,CeO2纳米颗粒被掺入IPN聚合物中,用于PSCs设备的封装。
溶液加工中SAM层均匀性。虽然共组装或溶剂工程可改善均匀性(15,
16),但这些方法会显著增加SAM层制备的复杂度。双自由基结构引入或者自由基掺杂引入稳定开壳层双自由基结构的新型策略展现出独特
传统小分子或聚合物空穴传输层的导电性。但迄今为止,具有双自由基特性的SAMs仍鲜有报道。如何设计出在PSCs中稳定高效工作、同时确保大面积均匀成膜的双自由基SAMs,仍是亟待突破的难题。此外,当前仍缺乏
对底层钙钛矿子电池造成不可逆损伤,限制了其在高效率全钙钛矿器件中的应用。新型互连层解决方案创新性的n-SnO₂/p-SnO₂₋ₓ复合结利用氧化锡的双极性特性实现高效电子-空穴传输。简化的C60/SnO
(如紫外线固化的环氧树脂或硅胶)(图4g)和使用热塑性聚合物进行多步热压(图4h,i)。其中,多步热压因其强大的保护能力而在工业环境中得到广泛应用,但仍需进一步创新以提高效率和灵活性,同时最大限度地减少
of Organic Solar Cells”为题发表在顶级期刊Angewandte Chemie
International Edition 上。研究亮点:混合阴极界面层工程:通过设计和合成新型混合材料
曲线、(B)λ和n值、(c)TPC曲线、(d)Nyquist图和(e)暗J-V曲线。(f)用于在各种物理测量中比较三种CIL的性能的雷达图。总之,作者利用一种新型的高电子迁移率的多氟取代的酞菁铜衍生物
Voltage Loss”为题发表在顶级期刊Advanced
Materials 上。研究亮点:三维结构电子受体:开发了一种新型3D结构的电子受体,有助于提高有机太阳能电池的性能。高PLQY和适度结晶度
述受体材料与聚合物给体PBDB-T结合构建光伏器件后,作者鉴定出一种性能优异的受体分子LLZ
1,由于LLZ
1具有显著的J聚集特性、较高的LUMO能级、高的PLQY、高度有序的面子堆积模式以及
,大会国际学术委员会委员、一道新能CTO宋登元博士受邀出席并作《一道新能TOPCon
5.0高效电池关键技术与未来研究方向》主题报告分享。在第十二届光伏聚合物国际大会上,一道新能中央研究院副总经理戴建
0.5mΩ·cm²以下,让电子能够快速、高效地传输,从而有效提升了电池的开路电压。引入了大高宽比梯形栅线新工艺技术,新型浆料与钢板印刷技术的使用增加了栅线的表面积,减少了电流传输的阻力,使得电流能够更加
发电系统使用的是高环保、高耐候的类铝聚合物材料,能抵抗海水腐蚀和紫外老化,提升浮体的安全性和耐久性,适用于湖泊、水库、采煤沉陷区等,在水面光伏发电的同时还能兼顾水域生态治理功能。从近海到远海,海上漂浮式光伏会面
临复杂多变的环境条件,一道新能通过对海洋环境荷载的评估,研发出了高可靠的水面光伏组件。此次展出的水面光伏组件采用高密封、“0”水透、抗紫外、抗盐雾的设计,环境适应性强,使用寿命长达30年,新型复合边框
实现大面积、高均匀性和高重复性的无掺杂有机空穴传输层(HTL)沉积,是推动全印刷n-i-p钙钛矿太阳能电池组件商业化的关键。然而,传统聚合物空穴传输材料(HTM)在印刷过程中表现出非牛顿流体特性,其
聚合物D18结合提出了一种分子协同(MC)策略。研究发现,预聚集的聚合物D18可作为“晶种”,通过分子间C-H···π相互作用诱导小分子BDT-MB优先形成面朝上取向,从而抑制其不利组装行为。此外