套件是由绝缘监测系统和接地保护系统两部分构成,工作原理如下:
绝缘监测系统:假设电池板PV+对大地的绝缘阻抗为Rx(因负极接地,故无需监测PV-对地阻抗)。首先为PV+并联已知电阻R1,其次测量
并联后PV+对大地电压,最后计算出Rx值。
一旦Rx低于阈值时,逆变器立刻报警停机,防止绝缘阻抗过低造成的短路风险。
绝缘监测的原理
接地保护系统:GFDI(PV
补偿,将所需的补偿电流输出到电网,完成谐波滤除的功能,实现了25次及以下谐波补偿能力。同时,通过实时检测的负载谐波电流及并网点的谐波电压,调节虚拟谐波阻抗进行控制,有效抑制谐振。 图7.
进行有针对性的补偿,将所需的补偿电流输出到电网,完成谐波滤除的功能,实现了25次及以下谐波补偿能力。同时,通过实时检测的负载谐波电流及并网点的谐波电压,调节虚拟谐波阻抗进行控制,有效抑制谐振。图7.
指定次谐波进行有针对性的补偿,将所需的补偿电流输出到电网,完成谐波滤除的功能,实现了25次及以下谐波补偿能力。同时,通过实时检测的负载谐波电流及并网点的谐波电压,调节虚拟谐波阻抗进行控制,有效抑制谐振
(>80%),不含卤化物,表面绝缘阻抗高(1013以上)助焊效果良好,有足够的热稳定性,旨在预热过程中保持活性和在焊接时有足够的活性来降低电池片的主栅线或背电极。问题3.怎样检验其各项性能?助焊剂需要
化合物不用清洗,表面绝缘阻抗高,可快速焊接传统引线器件和SMD器件等特点,除此之外,还具有普通助焊剂所具有的特点。4.3.1、化学活性要达到一个好的焊点,被焊物必须要有一个完全无氧化层的表面,但金属一旦
近年来,薄膜电容器凭借着自身损耗低、阻抗低、高耐压、高频特性好等优点广泛应用于新能源各领域,而新能源各领域的爆发式增长又推动了薄膜电容器需求的快速增长。未来,光伏、风电行业的发展将会进一步带动薄膜
ratio,PR)有关。综合效率的相关因素很多,包括组件实际温度、组件匹配度、辐射条件、灰尘、电路阻抗、逆变器损耗等等。良好设计的光伏电站,年均PR可以达到80%-90%。所以我们计算光伏资源量不能只看
,包括组件实际温度、组件匹配度、辐射条件、灰尘、电路阻抗、逆变器损耗等等。良好设计的光伏电站,年均PR可以达到80%-90%。所以我们计算光伏资源量不能只看光伏板的能量转化效率,还要看它安装在什么地方
很多,包括组件实际温度、组件匹配度、辐射条件、灰尘、电路阻抗、逆变器损耗等等。良好设计的光伏电站,年均PR可以达到80%-90%。所以我们计算光伏资源量不能只看光伏板的能量转化效率,还要看它安装