点时就有三排组件被完全遮挡。 图9 图10如图9所示:由于该电站设计过程中未对屋面障碍物分布情况进行现场踏勘,导致相邻几块组件之间均有阴影投影,严重影响了系统发电量。如图10所示:该电站在设计
腐蚀。 图7 图8如图7所示:该电站使用的塑料汇流箱为水平安装,由于汇流箱锁孔防水性较差,再加上水平安装导致汇流箱进水。如图8所示:该屋顶电站在设计过程中由于对气楼阴影估算不足,导致该系统在下午3
,该软件可将误差率严格控制在5%内,对电站开发具有很强的指导作用。该软件也创新性地应用基于可视化渲染及数字化仿真技术,实现了设计效果的可视化展示、全站巡游与运行状态模拟、阴影遮挡分析与设计校验等,在
误差率严格控制在5%内,对电站开发具有很强的指导作用。 该软件也创新性地应用基于可视化渲染及数字化仿真技术,实现了设计效果的可视化展示、全站巡游与运行状态模拟、阴影遮挡分析与设计校验等,在仿真技术方面
识别出引起录入错误值的触发事件,设置采集器系统在该事件发生时停止采集,例如当辐照仪处于阴影中时采集器停止录入其数据。数据采集的各个环节都有可能导致异常值的出现,且传感器与通讯线缆是最容易导致数据异常的
的波动会对长时间尺度下电站关键绩效的计算产生不利影响。假设遇到一些疏散云团飘过数兆瓦的阵列造成的局部遮挡的情景,虽然对阵列局部瞬时的影响非常显著,但是剧烈的波动会随当天的时长累计被平滑到对整个场站的
件发生时停止采集,例如当辐照仪处于阴影中时采集器停止录入其数据。数据采集的各个环节都有可能导致异常值的出现,且传感器与通讯线缆是最容易导致数据异常的环节。一些策略可以大幅度减少异常值出现的概率,其中多数
云团飘过数兆瓦的阵列造成的局部遮挡的情景,虽然对阵列局部瞬时的影响非常显著,但是剧烈的波动会随当天的时长累计被平滑到对整个场站的稳定影响。由于评估的对象为整个场站,所以输入计算的气象数据需要使用场站气象
识别出引起录入错误值的触发事件,设置采集器系统在该事件发生时停止采集,例如当辐照仪处于阴影中时采集器停止录入其数据。数据采集的各个环节都有可能导致异常值的出现,且传感器与通讯线缆是最容易导致数据异常的
的波动会对长时间尺度下电站关键绩效的计算产生不利影响。假设遇到一些疏散云团飘过数兆瓦的阵列造成的局部遮挡的情景,虽然对阵列局部瞬时的影响非常显著,但是剧烈的波动会随当天的时长累计被平滑到对整个场站的
微逆界销量全球第二、澳洲和中国等市场占有率第一的品牌。
微型逆变器对于光电建筑起着非凡的意义。微逆具有设计、安装灵活,组件级别MPPT及监控,是建筑屋顶上的多朝向、结构复杂、阴影遮挡的系统的最佳解
直流电(>600V),避免了高压直流电弧火花引起的火灾风险,在建筑屋顶上更加安全;阴影、灰尘、树叶对电池板的部分遮挡,不再有短板效应,消除了组件朝向和角度不同而造成的失配问题,此外,微逆启动电压低,从日出到日落
中某一组件是否出现故障,然后联系专业人员用钳型表、热像仪等专业化设备对系统进行诊断,最终确定系统中出现问题的组件。
9、光伏组件上的房屋阴影、树叶甚至鸟粪的遮挡会对发电系统造成影响吗?
光伏组件上
的房屋阴影、树叶甚至鸟粪的遮挡会对发电系统造成比较大的影响,每个组件所用太阳电池的电特性基本一致,否则将在电性能不好或被遮挡的电池上产生所谓热斑效应,一串联中被遮挡的太阳电池组件将被当做负载消耗其它
固定水平倾角,每排组件之间需要间隔一定间距以保证不被前排组件阴影遮挡,所以整个项目占用屋顶面积会大于可以实现组件平铺的彩钢瓦和别墅屋顶。一般来说,考虑到自然遮挡和女儿墙高度等复杂因素后,1KW占用屋顶
为:(年度发电量收购电价)。
一般经验认为扩容部分受到南面阵列阴影的遮挡,发电量损失很大。我们根据分析与工程实验证明,扩容部分的单位年度发电量可达到原有阵列单位年度发电量的90%~95%,虽然受到
南面阵列阴影的遮挡,发电量损失比例并非很大,纬度越高的地区损失比例越小。
对于老电站的扩容,其收购电价可能为1.15元/KWh或1.00元/KWh,那么以格尔木地区为例,扩容部分的年度发电收益