Cu2ZnSn(S, Se)4
(CZTSSe)太阳能电池价格便宜,是具有前景的薄膜光伏电池器件。但是CZTSSe太阳能电池的性能受到电荷损失和缺陷的严重影响。有鉴于此,中国科学院物理研究所孟庆
波等通过数据驱动的方法分析CZTSSe的深缺陷,发现CZTSSe的深缺陷能够作为供体。发展了缓解晶化缺陷的方法,显著改善CZTSSe电池性能。基于发现的深缺陷能够作为供体的现象,进一步提出
的辐射复合速率导致光致发光量子效率受到缺陷的影响,这成为了研究的主要难题之一。为了解决这一问题,科学家们采用了各种钝化策略来降低3D钙钛矿薄膜中的缺陷密度,接近单晶的水平。然而,尽管取得了一定进展,但
缺陷钝化对于提高钙钛矿太阳能电池的性能和稳定性至关重要。然而,该过程会影响钙钛矿的表面功函数(SWF),可能导致能级失配。以前的研究仅依赖于钝化剂偶极矩的静电势(ESP)分析,可能无法充分描述钝化剂
-钙钛矿界面处SWF的变化。研究结果表明,当将相同的钝化剂应用于n型和p型钙钛矿时,钝化剂与缺陷之间的相互作用会导致不同的SWF趋势。鉴于此,2024年5月28日香港城市大学馮憲平&中国台湾
,检测其反射光或透射光的特性,从而实现对组件内部缺陷、裂纹等质量问题的快速检测。这种技术的应用,为光伏组件的质量控制提供了有力支持。激光技术在光伏行业的应用场景广泛而多样,从硅片切割到电池制造再到组件检测
攻击或出现故障,就可能对电网的稳定运行构成严重威胁。北美电力可靠性公司(NERC)发出警告,指出逆变器的潜在缺陷对光伏系统的可靠性构成了巨大的威胁,并可能引发大范围的停电事件。此前,美国能源部在2022
减少缺陷和杂质,从而提高电池的光电转换效率。精确控制:通过精确控制反应气体的流量、温度和压力,CAT-CVD设备能够精确控制薄膜的生长过程,实现对薄膜厚度和成分的精确调节。高效率生产:与传统的CVD技术
,缺陷的种类复杂多变,许多缺陷非常微小,区分度低,使得检测工作更加困难。最后,传统的质量管控方式需要投入大量的人力和财力,即使如此,仍然存在漏检的风险。这些因素共同构成了质量管控的主要难点,亟需通过
训练只能够在有限的数据基础上进行。第二,高精度。工业质检的标准要求AI检测系统以很高的准确度检测、识别和分类图像中的目标对象,如缺陷检测、尺寸测量、物体识别和分类等任务。高精度是工业视觉检测系统的一个
普遍认为,导致钙钛矿稳定性欠佳的主要原因包括电子缺陷、电极氧化、钙钛矿混合电子/离子半导体的性质,或在湿气和氧气下容易发生化学分解。“我们最近的研究发现,设备长时间运行造成的损耗并不是导致钙钛矿太阳能电池
, Professor10:10-10:35硅片、电池切口、钙钛矿及叠层电池缺陷钝化新策略:钝化液提效技术Liquid-based Passivation Strategy for Silicon
,PFPA+与VFA缺陷的结合比TFPA+更强,阴离子Cl−与VFAI和不配位的 Pb2+具有足够强的相互作用,导致PFPACl均匀覆盖在钙钛矿膜的整个表面,并且与空穴传输层的能量排列更好。因此