索比光伏网讯:由于化学电源的电化学性能与电极/电解质的界面过程密切相关,涉及电荷转移、离子输运、相的生成和转化等步骤,在纳米尺度上深入理解界面过程对于器件设计和材料优化具有重要意义。然而能源体系的
分析化学的挑战和难点之一。中国科学院化学研究所分子纳米结构与纳米技术院重点实验室文锐课题组致力于锂电池界面电化学过程的原位研究并取得系列进展。在前期工作中,他们利用氩气环境下的原位原子力显微镜(AFM),在
分校的研究团队则采用培育出的细菌作为高效转换光能的材料;而加州理工学院的工程师则是利用纳米光子操作技术和热电技术开发出了一种光探测器,以此提升太阳能采集的效率。近日,针对这一问题,上海交通大学太阳能
研究所沈文忠教授及其团队也借助纳米技术给出了自己的研究解决方案。研究团队指出:由于地球的自转和公转,太阳光对太阳电池器件的入射角在不同季节和一天的不同时刻都是不一样的,一般随着入射角的增大,反射光损失会
项目;大恒能源庐阳区1GW光伏智能工厂项目;聚能新能源包河区HDPE基纳米复合材料研发及其水面漂浮建筑应用产业化项目;中南光电肥东县1GW高效组件项目。(二)加快光伏产业技术创新。1.完善产业创新
从事半导体硅材料的研究,包括超大规模集成电路用硅材料,太阳能光伏硅材料、硅基光电子材料和纳米硅半导体材料,他领导的浙江大学国家重点实验室硅材料研究小组是国际上最重要的硅材料研究小组之一,他的原创理论
掺锗硅晶体生长系列技术,系统解决了相关硅晶体的基础科学问题,实现了实际应用。
研究了纳米硅等的制备、结构和性能,成功制备出纳米硅管等新型纳米半导体材料,为其器件研究和应用提供了材料基础。发表SCI
、纳米硅及纳米半导体材料等研究工作。
学术贡献:主要从事半导体硅材料研究,取得了系列创新成果。提出了掺氮控制极大规模集成电路用直拉硅单晶微缺陷的思路,系统解决了氮关缺陷的基础科学问题,促进了其在国际上的
广泛应用;提出了微量掺锗控制晶格畸变的思路,发明了微量掺锗硅晶体生长系列技术,系统解决了相关硅晶体的基础科学问题,实现了实际应用;研究了纳米硅等的制备、结构和性能,成功制备出纳米硅管等新型纳米
。 2012年,欧盟宣布将在2015年之前为薄膜太阳能电池项目“纳米级”提供1000万欧元科研经费的预算。13个欧洲研究小组将共同参加硫族化合物太阳能电池技术的开发。 同年,我国工业和信息化部印发
博士在报告中表示,湿法黑硅技术已经完全成熟,而且可在不同晶面上实现同样的微、纳米绒面,消除晶界,解决电池片的色差问题,基本实现外观单晶化,而且结合PERC工艺,电池性能进一步提升。针对黑硅技术提效是否有
太阳能电池反射的阳光作为未使用的能源而失去了。红珠凤蝶的翅膀是由纳米结构(纳米孔)形成,这些纳米结构可以帮助吸收比光滑表面更宽的光谱。
卡尔斯鲁厄理工学院(KIT)的研究人员现在已经成功地将这些
纳米结构转移到太阳能电池上,从而将其光吸收率提高了200%。科学家们在“Science Advances”发表了他们的研究成果。
红珠凤蝶的翅膀的纳米结构可以转移到太阳能电池上,并将其吸收率提高
微米级和纳米级颗粒,膜层表面的粗糙度相对较大时,灰尘与膜层的接触面积反而减小,更易于灰尘滑落。微米级球体在纳米级粗糙度表面的吸附情况图中是美国国家能源部可再生能源是研究的成果,微米级灰尘颗粒在不同粗糙
界面的吸附情况,灰尘颗粒随着膜层表面粗糙度增大而吸附力减小。(4)分解有机物(光催化)在光照下,纳米二氧化钛可与空气中的水汽和氧气发生化学反应,生成强氧化能力的-OH高活性基团。在不消耗纳米材料自身的
本次发布会重磅推出辉伦(PHONO SOLAR)品牌的晶钻组件与繁星组件新品。据介绍,最新推出的晶钻组件采用全球独有的纳米制绒技术。与传统的黑硅技术不同,辉伦技术团队通过在光伏电池片表面形成钻石形