达到6.5%,去年攀升到10%,2013年,有效率为15%(Nature, 2013, 499, 316-319)。这让人惊讶。以色列魏茨曼科学研究学院材料学家David Cahen说,在太阳能电池
能走多远。在这个过程中,电子会放弃从阳光的光子获得的多余能量,产生热能而非电力。 有机太阳能电池的扩散长度大约为10纳米。相比之下,钙钛矿的扩散长度是前者的100倍。结果是,你能收集通行了更长距离的
的顶级硅光电池在实验室中的转换率能达到25%。但是,到2011年年底,新电池的有效率翻了一番达到6.5%,去年攀升到10%,2013年,有效率为15%。这让人惊讶。以色列魏茨曼科学研究学院材料学家
能量,产生热能而非电力。
有机太阳能电池的扩散长度大约为10纳米。相比之下,钙钛矿的扩散长度是前者的100倍。结果是,你能收集通行了更长距离的电荷。gratzel说。
钙钛矿还有另一个
索比光伏网讯:近期,中科院合肥物质科学研究院固体物理研究所研究人员成功实现了一系列多元硫属化合物纳米晶的物相与能带调控,材料展现出良好的电催化、热电、介电及近红外吸收性能。 多元硫属化合物在光伏
相纳米晶,并通过实验系统标定了铜锌锡硫硒(CZTSSe)的能带位置,为其在高效太阳电池(如彩虹电池)和催化体系中的应用打下了基础。相关结果发表在自然出版集团的《科学报告》(Scientific
热潮。根据材料不同,太阳能电池可分为:硅太阳能电池,多元合物薄膜太阳能电池,聚合物多层修饰电极型太阳能电池,纳米晶太阳能电池,有机太阳能电池。 目前商业市场主流趋势使用多晶硅,非晶硅薄膜太阳能电池,也有
公司后,德国默克在小分子及生物制药,液晶,生命科学及化学性能领域均有突破性的发展。2010年统计,德国默克拥有员工40,560人,年产值近100亿人民币。德国默克早在1933年就在中国设立办事处,寻求
低成本有机半导体材料,应用范围十分广泛,在许多家庭用品中都可以看到。更重要的是,它可以加工成薄膜,能够很容易地用于电子设备当中。类似的材料此前已经被证明具有显著优势。新研究中,英国伦敦大学学院纳米
比特在量子技术中的价值。如果这个时间足够长,量子数据的存储、处理和传输便能够成为可能。论文第一作者、英国伦敦大学学院纳米技术中心的马克华纳说:量子计算机能够进行大规模、高强度、高精确度的运算。理论上
美国媒体称,晶体构成了汽车大灯所发出的冰蓝色光芒的基础,并且可能成为未来太阳能技术的依靠。
美国每日科学网站10月25日报道指出,晶体是二极管的核心。这里所说的晶体并不是存在于石英中的自然
发射效率及发光度也是亚利桑那州立大学物理系教授费尔南多庞斯研究团队中的科学家亚历克斯费希尔和博士候选人魏勇(音)正在进行的研究重点。在《应用物理通讯》杂志最近发表的一篇论文中,这个研究小组揭示了一种
沪研究人员凭借材料科学创新将想象变成现实,5平方米玻璃窗最高发电34瓦,可支撑一盏电灯照明。
如果玻璃窗在采光的同时还能发电,岂不一举两得?近日,上海大学研究人员凭借材料科学领域的创新将想象
通过特殊技术令一部分光变向射向窗框,是否就能打破两难?
光也能听指挥?高教授说,如果在玻璃表面用特殊纳米涂层,其中的高分子材料颗粒以特定方式排布,用肉眼看还是透明光滑的,但若在微观领域观察,一个个
商业化。在联邦政府和州政府的援助基金帮助下,罗切斯特也在纽约州立大学的纳米科学与工程学院设立了光伏制造和科技发展基金,目的就是使纽约州成为发展光伏制造业的中心,而铜基材料则可以成为重要并且与众不同的角色
)奖励了88.7万美金给Intrinsiq 材料公司--一家致力于研究纳米级可印刷电子油墨的开发商,以帮助该公司将铜应用在太阳电池上的研究并将其商业化。Intrinsiq 材料公司的工厂位于英国的
太阳能电池(OPVs)达到最高效率的时候,它们就是不透明的,但是科学家们也能够选择牺牲效率来实现半透明(通过将金属电极稀释到只有几纳米的方式)。 现在,ICFO的研究人员已宣布,他们能够打造一个
金属特性(能隙为0 eV),并不适合做热电材料和太阳能电池材料。为此,人们希望通过结构调控和掺杂手段,增大石墨烯的能隙,从而拓展它们在光电器件中的应用。尽管碳基、硅基二维纳米材料是当前的研究热点,但
具有适中能隙 (1 2 eV),且能隙不依赖于手性或尺寸的材料尚未见报道。 福建物构所结构化学国家重点实验室吴立明研究员课题组在国家自然科学基金重点和面上项目支持下,通过全局粒子群的优化搜索算法与