氧化物作为材料,恰恰相反,这类电池的活性材料是有机铅碘化合物(甲胺铅碘,化学式CH3NH3PbI3)。那为什么还以此命名呢?因为甲胺铅碘可以形成具有钙钛矿结构的晶体,有机短链、铅离子以及碘离子分别占据
(CaTiO3)来分析资源储量,误人不浅。退一万步说,如果真用CaTiO3来做电池,它的能带宽度对应于387纳米的光线,意味着不可能吸收利用任何可见光,所以当做活性材料是没有意义的,用做传导材料倒是不无
作为材料,恰恰相反,这类电池的活性材料是有机铅碘化合物(甲胺铅碘,化学式CH3NH3PbI3)。那为什么还以此命名呢?因为甲胺铅碘可以形成具有钙钛矿结构的晶体,有机短链、铅离子以及碘离子分别占据晶格的
资源储量,误人不浅。退一万步说,如果真用CaTiO3来做电池,它的能带宽度对应于387纳米的光线,意味着不可能吸收利用任何可见光,所以当做活性材料是没有意义的,用做传导材料倒是不无可能。鲸鱼不是鱼,龙
排斥。只有在溶剂蒸发了的时候,才会发生络合。
这可以很容易地通过应用500 ℃的高温涂在晶体上而得到,也就是热化学诱导,例如,通过添加氯化锗。通过使用诸如氯化磷等其他氯化物,很
容易实现对锗的掺杂。这让研究人员有了一个非常有针对性的的方法来直接调整产生的纳米材料的性能。
为了在锗原子群集形成所需的多孔结构,LMU研究员蒂娜Fattakhova-Rohlfing博士发明了一种
时候,才会发生络合。这可以很容易地通过应用500 ℃的高温涂在晶体上而得到,也就是热化学诱导,例如,通过添加氯化锗。通过使用诸如氯化磷等其他氯化物,很容易实现对锗的掺杂。这让研究人员有了一个非常有针对性
的的方法来直接调整产生的纳米材料的性能。为了在锗原子群集形成所需的多孔结构,LMU研究员蒂娜Fattakhova-Rohlfing博士发明了一种方法能够满足这种纳米结构:初始步骤就是把微小的珠子形成
架构是贵金属负载在纳米半导体颗粒的纳米复合材料,如金属铂修饰的硫化镉纳米复合材料是性能优异的光催化材料代表。然而,这类材料含有贵金属和硫化物,有可能对环境带来新的问题。所以,发展无金属的高效催化剂成为该
柱能够将太阳光转换成电能。此种半导体包含两种类型的硅:一种是掺入少量杂质磷元素的硅晶体,另一种是掺入少量杂质硼元素的硅晶体。这两种硅的交界处被称为PN结(PN junction),对于太阳能电池
达到多少,半导体才能发挥其最大功效。答案是40微米高,790纳米深,效率才能高达13%;而平面型的太阳能电池板结构只有不超过6%的太阳能可转化为电力,能效要高出一倍之多。
特温特大学多个
纳米晶体杂化薄膜太阳电池的效率[Hybrid Nanorod-polymer Solar Cells]。尽管如此,有机聚合物太阳能电池的研究还刚刚起步,其转化效率低、使用寿命短等问题都还无法使之成为具有
染料敏化纳米晶体太阳能电池光电转换效率从之前的不足1%提高到7%以上。随后的10年中,研究人员不仅验证了染料敏化太阳能电池(DSC)作为P-N节光电装置在技术和经济上的可行性,还合成了其他可用
、更直接地传输到电极上。该项技术发挥了纳米棒的高载流子迁移率的潜能,提高了用纳米棒和共轭聚合物制成的纳米晶体杂化薄膜太阳电池的效率[Hybrid Nanorod-polymer Solar Cells
石墨烯,提出这个时代将来最大的颠覆是石墨烯时代将颠覆硅时代的想法,并认为未来10年至20年内将爆发一场技术革命。
石墨烯是由单层碳原子层构成的蜂窝状晶格二维原子晶体,理论厚度仅为0.34纳米,具有优良的
柔性光电器件,包括触摸屏传感器、有机发光二极管(OLED)和有机光伏器件。
由于石墨烯具有优异的导热性能和力学性能,还在传感器、聚合物纳米复合材料、光电功能材料、药物控制释放等领域表现出众多潜在的
可以分为晶体硅太阳能电池、薄膜电池、染料敏化电池和有机太阳能电池等几类。其中染料敏化太阳能电池和有机太阳能电池尚处于实验研发阶段,市场占有率极低。图1显示了欧洲光伏产业协会(EPIA)列举的太阳能光伏
电池分类及市场占有份额。从图1中可以看出,晶体硅电池仍是光伏产业的主流产品,市场占有份额约9O%。薄膜电池领域中,化合物薄膜电池市场占有份额在1/2以上,高于非晶硅薄膜电池。1.1晶体硅太阳能电池