提供研发经费。中科院金属所负责石墨烯基透明导电薄膜、三维网络散热材料和动力电池用电极材料及产业化三个方面的具体研究开发工作,并提供产业化可行性报告;而金路集团除了负责提供研发经费之外,公司还将组织相关
,这些有助于公司逐步实现打造石墨深加工基地的战略构想。 中航三鑫中航工业航材院宣布,已突破制备大尺寸、高质量石墨烯薄膜的技术难题。随后,该消息在网络上广泛传播,受消息影响,在大盘承压大跌之下,一众石墨烯
杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。据了解,石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。至于薄和坚硬,相信大家
其他因素,包括苹果发布的一条招聘有太阳能电池工作经验的薄膜技术工程师的招聘广告,之后苹果与GT Advanced Technologies签署了蓝宝石玻璃显示屏协议。苹果宣布2014财年资本支出将达到
Solliance和Eindhoven埃因霍温科技大学将在荷兰运行新的太阳能测试设施。该太阳能测试设施,计划在2013年11月27日开始正式运行,将用于薄膜太阳能电池、光学应用的突破性研究工作
。
新的试验设施设在埃因霍温高科技园的飞利浦创新服务区,是Solliance联盟的一部分,特别是有一个高分辨率的透射电子显微镜,可进行太阳能电池组件的原子-原子边界研究。薄膜太阳能电池包括不同材料
索比光伏网讯:石墨烯是一种由碳原子构成的单原子厚度二维薄膜新材料。由于其导热系数高、电阻率极低、电子迁移速度极快,因此被期待用来发展新一代电子元件或晶体管,用来制造透明触控屏幕、光板等。但是由于其半
金属特性(能隙为0 eV),并不适合做热电材料和太阳能电池材料。为此,人们希望通过结构调控和掺杂手段,增大石墨烯的能隙,从而拓展它们在光电器件中的应用。尽管碳基、硅基二维纳米材料是当前的研究热点,但
以往的研究表明,二维碳薄片石墨烯拥有一个通用的光吸收系数。而据物理学家组织网近日报道,现在美国能源部劳伦斯伯克利国家实验室的科学家首次证实,所有的二维半导体也同样普遍适用于一个类似的简单吸光规律
。他们利用超薄半导体砷化铟薄膜进行的实验发现,所有的二维半导体,包括受太阳能薄膜和光电器件行业青睐的Ⅲ-Ⅴ族化合物半导体,都有一个通用的吸收光子的量子单位,他们称之为AQ。相关研究论文发表在美国《国家科学
%的效率。
研究人员们仍在模拟原型设计所用的超薄太阳能电池材料。透过精密的模拟过程,各种拓扑结构的层叠片材使用了原子石墨烯薄膜、二硫化钼与二硒化物。这些设计的优点在于不仅较传统
不同材料,以期找到最轻薄的太阳能电池组合
MIT估计,其超薄型太阳能电池薄膜基本上是厚度约1奈米的 2D 薄层比传统太阳能电池更节能1,000倍以上。但其缺点是效率较低,且需要较
成为市场的热点,工艺上以纳米技术为核心,材料上涉及硫族络合物(MCC)、二氧化钛纳米膜(载体)、碲化镉、铜铟镓硒等新材料,可关注相关上市公司 .纳米概念有望接力石墨烯加拿大科学家近日开发出一种可显著改善
研究所太阳能材料与工程研究室于2012年在英国化学会《化学通讯》发表了量子点敏化太阳电池中量子点制备的新方法。据部分市场人士称,纳米概念有望接力石墨烯概念,成为新的主题投资的热点题材。在现有的晶硅
索比光伏网讯:我们首先要简单了解一下石墨烯(Graphene),这是一种由碳原子构成的单层片状结构的新材料,由碳原子以 sp2 杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料
。据了解,石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。 谈到薄和坚硬,相信你很快会想起苹果在 iOS 设备上使用上康宁大猩猩玻璃。虽然石墨烯
《自然光子学》上。 传统的材料所能承受的拉伸弹性应变通常不会超过0.2%。最近出现的一类新型低维材料,如石墨烯,单层二硫化钼等,能够承受巨大的弹性拉伸。冯济及其合作者考虑如何运用弹性应变为材料带来前所未有
的性能。他们设想让探针顶压悬浮的弹性薄膜,构造出一个不均匀的应变场。弹性应变在微观上对应的是化学键的拉伸或者压缩,改变材料中电子(或者载流子)的能量。不均匀的应变分布就可以引发一个对载流子的有效电场
屋外阳光下的转换率已自现行的4.5%提升至7%的水准,TDK并计画于今(2011)年夏天透过甲府工厂量产该款太阳能光伏电池。据报导,该款太阳能电池为采用薄膜基板的非晶硅
制作太阳能电池在有望成为新一代太阳能电池的有机薄膜太阳能电池领域,实现了世界最高的9.2%能源转换效率。三菱化学的有机薄膜太阳能光伏电池的特点是,可利用印刷技术进行高效生产。不久的将来,也许房间的壁纸