方案,将系统分成20个1000kWp的并网发电分区,每个光伏并网发电分区的电池组件采用串并联的方式组成2个逆变升压单元。太阳能电池组串输入防雷汇流箱、直流配电柜后,接入逆变器输出为0.315kV低压
交流电,然后接入1000kVA箱式变压器就地升压为35kV。20台箱式变压器35kV出线线缆经2回直埋集电线路汇集到35kV厂内开关站35kV母线,接入方案本期新建1回35kV线路接至土湾110KV变电站
1000kWp的并网发电分区,每个光伏并网发电分区的电池组件采用串并联的方式组成2个逆变升压单元。太阳能电池组串输入防雷汇流箱、直流配电柜后,接入逆变器输出为0.315kV低压交流电,然后接入1000kVA箱式
变压器就地升压为35kV。20台箱式变压器35kV出线线缆经2回直埋集电线路汇集到35kV厂内开关站35kV母线,接入方案本期新建1回35kV线路接至土湾110KV变电站的35kV侧,新建线路长为
分成20个1000kWp的并网发电分区,每个光伏并网发电分区的电池组件采用串并联的方式组成2个逆变升压单元。太阳能电池组串输入防雷汇流箱、直流配电柜后,接入逆变器输出为0.315kV低压交流电,然后
接入1000kVA箱式变压器就地升压为35kV。20台箱式变压器35kV出线线缆经2回直埋集电线路汇集到35kV厂内开关站35kV母线,接入方案本期新建1回35kV线路接至土湾110KV变电站的35kV侧
1000kWp的并网发电分区,每个光伏并网发电分区的电池组件采用串并联的方式组成2个逆变升压单元。太阳能电池组串输入防雷汇流箱、直流配电柜后,接入逆变器输出为0.315kV低压交流电,然后
接入1000kVA箱式变压器就地升压为35kV。20台箱式变压器35kV出线线缆经2回直埋集电线路汇集到35kV厂内开关站35kV母线,接入方案本期新建1回35kV线路接至土湾110KV变电站的35kV侧,新建线路
逆变器(直流柜)选型
3-4. 光伏组件串联数计算
3-4. 光伏组件串并联数计算
3-5. 汇流箱选型
3-6. 电缆选型
3-6. 电站
运行
6-6. 定期检查各组件串开路电压
6-7. 密切观察光伏电站各逆变器正常运行,发电、送电正常。
6-8. 其他
(三)、光伏组件、逆变器、支架、线缆等部件的选型
(四
小型化,并且隐藏在板块缝隙或外装饰条内侧。
电缆短接头小、板块组合需多组化
光伏发电效率的提高即使是0.1个百分点也是科研人员花费大量精力、时间和金钱才能得到,但是线缆传输过程中的损耗却有近
1个百分点,所以如何减少线缆及其他设备的损耗是BIPV设计中注意的要点。
幕墙上应用一定要考虑室内外的美观,所以线路必须做到室内外均不外露。另外板块通过串并联的结合增加电池板的分组,减少个别板块
,但是线缆传输过程中的损耗却有近1个百分点,所以如何减少线缆及其他设备的损耗是BIPV设计中注意的要点。幕墙上应用一定要考虑室内外的美观,所以线路必须做到室内外均不外露。另外板块通过串并联的结合增加电池板
仍处于研发阶段,不成熟。所以离网系统由于蓄能环节的高投入和高维护不是今后的发展方向,所以我们设计时尽量减少蓄电池的使用。型材便于检修和线缆隐蔽BIPV光伏组件的安装要比普通组件的安装难度大很多。一般
最大功率点的不一致性,在监控和管理上还面临管理不够精细的问题,而通过检测直流汇流箱的每路电压电流的方式,不仅成本增加,而且检测精度也达不到要求。
而组串式逆变器方案能够精确监测逆变器的每一路组串
建设时,各方阵内通讯管理机或数据采集器获取到的下挂智能设备直通率不足60%,剩余40%以上需要通过硬件排障或软件调试等方式联调后才能正常接入监控系统。
同时,大量的RS485通信线缆的敷设也需要
产品的节能效果与稳定性。目前已成功推出系列绿色、节能数据中心解决方案,主要采用高效率、低谐波的UPS电源、240V高压直流供电、整体规划设计数据中心的供电系统、气流组织,强弱电的线缆路由组成,为
总体设计 方案设计 构件加工 部件(含光伏器件)购置 光电施工准备 测量放线 玻璃光伏框架施工 光伏面板安装 线缆安装 电器设备安装 所有设备连通完毕 系统试运行 检查系统是否正确正常 合上直流测开关