索比光伏网讯:近日,中科院院士、中科院大连化物所研究员李灿领导的团队,在以五氮化三钽为基础的半导体光阳极研究中,发现了空穴储存层电容效应,并由此设计获得了高效稳定的太阳能光电化学分解水体系。相关成果
摘要:本文研究了单晶硅片不同的基体电阻率,对扩散后方块电阻、表面浓度和结深的影响,采用四探针测试法测定了发射极的方块电阻,结果显示基体电阻率越高,扩散后的方阻越高,采用电化学电压电容(ECV
在硅片表面的扩散层中的杂质含量,扩散结深用(Xj)表示。电化学C-V是当前测量半导体载流子浓度分布的非常重要的方法。在在硅半导体中ECV的应用也越来越广泛,逐渐成为ink"光伏行业电池技术研究和发展的
近日,中科院大连化物所李灿院士领导的研究团队在太阳能制氢研究领域取得多项进展。不仅实现了2.5%的光催化体系世界最高太阳能制氢效率,同时还获得了稳定性最高的Ta3N5太阳能光电化学分解水体系,并在
、热电反应的综合制氢流程,每小时可产氢97升,效率达10%左右。●太阳能光电化学电池分解水制氢1972年,日本科研人员制造的太阳能光电化学电池在太阳光照射下,同时实现了分解水制氢、制氧和获得电能。这一
研究中,发现空穴储存层电容效应,藉此设计并获得了高效稳定的太阳能光电化学分解水体系,相关研究成果以通讯形式在线发表在近期的《德国应用化学》杂志上(Guiji Liu, Jingying Shi
使用寿命传统组件的背板有一定的透水率,会吸进氧气、水汽,加速材料的降解,引起背板老化、裂开,同时会导致组件内部发生电化学腐蚀,增加出现PID和黑线的概率。背板使用无机材料的玻璃后,因为玻璃材料不透水
空穴储存层电容效应,藉此设计并获得了高效稳定的太阳能光电化学分解水体系。光电催化分解水制氢是利用太阳能制备燃料的理想途径之一,近半个世纪以来,各国科学家们不懈努力,致力于发展高效、稳定的太阳能光电
机理被称之为电位诱发衰减(PID)、极性化、电解腐蚀和电化学腐蚀。薄膜电池导电层(TCO)腐蚀:薄膜模组在运行一段时间之后TCO会出现损坏。研究结果显示,TCO腐蚀主要发生于利用覆盖工艺制备的带有
。 作为第三代太阳能电池,染料敏化太阳能电池被认为是有可能成为未来太阳能电池的主导。这种电池属于光电化学电池,其光阳极材料大部分研究主要集中二元氧化物纳米材料上,对三元氧化物研究甚少。 李政道的研究从此
电化学腐蚀就不会发生。 1.2 什么是电化学腐蚀表?一张电化学腐蚀表是一张包含了根据导电性或电化序排序的金属等级表。 通常是用标准甘汞电极来进行测量的。 这张电化学腐蚀表表明,在这一系列的负端尾部上都是
再分配削减了电池的活性层;相关的电路被腐蚀等等。这些引起衰减的机理被称之为电位诱发衰减(Potential Induced Degradation,PID)、极性化、电解腐蚀和电化学