采用非晶,相较软磁铁氧体,其工作磁通密度和效率高,体积、重量、总损耗、磁致伸缩系数、受温度变化较小,产生的电磁干扰低等优势特点。非晶合金变压器的众多优势在光伏产业的崛起中起了重要作用。据悉,使用非晶
,主要体现在稳定性、升温等问题上,但是逆变器恰恰要求磁性元件性能要稳定、温度变化不大、效率高等。 下一页 余下全文 (2
,对气体流量比、微波功率、沉积压强和温度对减反射膜性质的影响进行了研究,通过大量有效的工作及一系列工艺数据,得出了制作减反射膜,分析了氮化硅薄膜的相对最佳沉积参数和优化工艺。1 减反射膜原理在了解减
反射薄膜原理之前,要先了解几个简单的概念:第一,光在两种媒质界面上的振幅反射系数为(1-ρ)/(1+ρ),其中ρ为界面处两折射率之比。第二,若反射光存在于折射率比相邻媒质更低的媒质内,则相移为180
~10年。而浮充电压即使只有5%的偏差,也会使蓄电池的寿命减半。必须考虑的是,铅酸蓄电池的电压特性具有明显的负温度系数,2V的电池约为-4.0mV/℃。也就是说,一个在25℃能够正常工作的充电器,在0
℃时就不能提供和保持足够的电量;而在50℃时这个充电器会导致严重的过充。合理考虑温度变化范围,充电器应该根据蓄电池的温度系数给予某种形式的补偿。实际中利用式(2)来确定浮充电压VF。其中VF0和T0
半导体,能隙值(1.45eV)位于理想的能隙范围内,同时具有很高的吸收系数,因此是高效率的理想太阳电池材料之一。目前工业化生产的模块效率已经达到12%(FirstSolar,2010年)。最近,通用电气
它可承受较高的温度,其发电功率不容易受温度影响。因此,薄膜太阳能电池的应用将十分广泛。
另外,由于薄膜太阳能电池具有便携、耐用、光电转换效率高等特点,可广泛应用于电子消费品、远程监控/通讯、军事
IN ACTION II 亦将太阳能制冷技术的开发列入中长程的重点研究项目。太阳热能用于制冷之技术主要分为吸收式、吸附式、喷射式等系统技术。其中,以吸附式之热源温度要求最低, 50~ 8 0 ℃ 间即可运转制冷。由于
以太阳热能制冷系统应用时,其设置成本主要包含制冷主机及集热器供热系统两大部分。在降低成本以利于推广的考虑下,采用热源温度要求低的固体吸附式系统时,集热器则可采用一般平板式集热器,而且系统的太阳能利用
吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计
材料以降低成本,可以提高电池的聚光倍数,这就对散热系统提出了更高的要求。目前国内三安光电已经做到1000倍聚光,相应的DBC使用了导热系数较Al2O3更高的AlN材料。值得注意的是,将光电和光热
非常快。工艺、材料是规模化生产最大瓶颈薄膜太阳能电池因为廉价的衬底材料(如玻璃、不锈钢、聚酯膜),有柔性,材料禁带宽度可调控,组件温度系数低等优点很受瞩目,在光伏市场的应用规模逐渐扩大,2010年已经占
CIGS多晶薄膜禁带宽度在1.06eV~1.63eV范围内可调控,而且材料的吸收系数高,是非常理想的太阳能电池材料。这类电池的衬底材料可以选择玻璃、不锈钢或者聚酯膜,都是廉价材料。商品化CIGS电池的
规模化生产最大瓶颈薄膜太阳能电池因为廉价的衬底材料(如玻璃、不锈钢、聚酯膜),有柔性,材料禁带宽度可调控,组件温度系数低等优点很受瞩目,在光伏市场的应用规模逐渐扩大,2010年已经占13%以上的市场份额
1.06eV~1.63eV范围内可调控,而且材料的吸收系数高,是非常理想的太阳能电池材料。这类电池的衬底材料可以选择玻璃、不锈钢或者聚酯膜,都是廉价材料。商品化CIGS电池的转换效率在7%~11%,日本的
,随着具有40%转换效率的Ⅲ-V族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性
。目前国内三安光电已经做到1000倍聚光,相应的DBC使用了导热系数较Al2O3更高的AlN材料。值得注意的是,将光电和光热结合起来的系统,聚光后产生的较多能量可再次转化为电力或热水,大大提高能源的
三阶段充电),可使太阳能电池板发挥最大功效,提高系统充电效率。1.5 温度补偿采用数字温度传感器DS18820检测蓄电池环境温度。对蓄电池的充电阈值电压温度补偿系数取-4mV/(℃单体)。补偿后的电压