综合利用解决方案电转气(Powerto Gas,简称P2G)是目前多网耦合的主流方案和路径之一。将可再生能源富余电力通过电解水转换为氢气和氧气,根据氢气利用路径的不同可以直接利用或者继续甲烷化为天然气。在
德国,电转气方案已经在多地试点推广。西门子公司2015年在德国曼海姆设立的风电制氢工厂已经能够商业应用并每年产生超过200吨的氢气。该工厂应用了最新的质子交换膜(PEM)设备,其快速的响应速度带来了巨大
解决方案电转气(Powerto Gas,简称P2G)是目前多网耦合的主流方案和路径之一。将可再生能源富余电力通过电解水转换为氢气和氧气,根据氢气利用路径的不同可以直接利用或者继续甲烷化为天然气。在德国,电
转气方案已经在多地试点推广。西门子公司2015年在德国曼海姆设立的风电制氢工厂已经能够商业应用并每年产生超过200吨的氢气。该工厂应用了最新的质子交换膜(PEM)设备,其快速的响应速度带来了巨大的收益
剑桥大学的一个研究团队开发出了一种使用太阳能发电从生物质中制取既可持续又相对便宜的氢气的方法。现代社会面临的挑战之一是废物产生的影响,随着自然资源大量减少,政府和企业对使用废物生产能源的需求越来越
迫切。自有记录以来,生物质一直是热和能源的来源:地球的石油储量来自古老的生物质,经历数百万年的高温高压最后成型;木质纤维素是植物生物质的主要组分。但迄今为止,生物质转化氢气还主要通过高温分解的气化过程
,NREL研究人员能够将氢气产生的外部量子效率的峰值推高到114%。该新型电池利用阳光分解水,可以显着地促进氢的产生,比目前使用的光电化学方法效率更高、成本更低。该研究的细节在发表于自然能源的论文中进行了概述
。其历时3年研发的APE背板,是尚善新材料全球首创的环保背板材料,具有不含氟材料、燃烧不会产生剧毒的氟化氢气体、不使用有机溶剂热固性胶水、易于回收利用等优点。 据介绍,APE背板的外层是白色耐候的
善新材料全球首创的环保背板材料,具有不含氟材料、燃烧不会产生剧毒的氟化氢气体、不使用有机溶剂热固性胶水、易于回收利用等优点。据介绍,APE背板的外层是白色耐候的尼龙12膜,具备综合的、优良的耐候性
APE背板,是尚善新材料全球首创的环保背板材料,具有不含氟材料、燃烧不会产生剧毒的氟化氢气体、不使用有机溶剂热固性胶水、易于回收利用等优点。据介绍,APE背板的外层是白色耐候的尼龙12膜,具备综合的
探索制取未来清洁能源氢气的新方法。
这个耗资380万美元的大太阳仅是德国新能源运动中的最新尝试2011年7月,默克尔政府制定了雄心勃勃的能源转型计划,旨在用太阳能、风能以及其他可再生能源取代煤炭
、天然气等化石燃料,减少碳排放。2016年,德国可再生能源利用占比达32%,在每年5月的某一天,德国全境的能源供应都来自可再生能源。
与此同时,德国也为新能源付出了巨大的代价。
1 寻找氢气
氢气
”。它的作用,是探索制取未来清洁能源——氢气的新方法。这个耗资380万美元的“大太阳”仅是德国新能源运动中的最新尝试——2011年7月,默克尔政府制定了雄心勃勃的“能源转型计划”,旨在用太阳能、风能
寻找氢气氢气燃烧时不排放碳,被广泛认为是一种清洁的“未来燃料”,可为汽车、飞机等提供动力。“如果我们希望飞机和汽车不产生二氧化碳,就需要数十亿吨氢气。”主持“大太阳”研究的德国航天中心主任霍夫施密特说
太阳。它的作用,是探索制取未来清洁能源氢气的新方法。这个耗资380万美元的大太阳仅是德国新能源运动中的最新尝试2011年7月,默克尔政府制定了雄心勃勃的能源转型计划,旨在用太阳能、风能以及其他可再生能源
取代煤炭、天然气等化石燃料,减少碳排放。2016年,德国可再生能源利用占比达32%,在每年5月的某一天,德国全境的能源供应都来自可再生能源。与此同时,德国也为新能源付出了巨大的代价。1 寻找氢气氢气