装置的核心是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器
2.1 两组串并联系统等效电路 两组串并联系统等效电路如图1(a)所示,系统由多路MPPT输入回路组成,每路MPPT接两路组串,各光伏组串通过Boost升压电路后并联在一起,前级Boost升压电路
两组串并联系统等效电路两组串并联系统等效电路如图1(a)所示,系统由多路MPPT输入回路组成,每路MPPT接两路组串,各光伏组串通过Boost升压电路后并联在一起,前级Boost升压电路一般都并联旁路
了条件,购置了电饭锅、电磁炉、洗衣机、电冰箱等家用电器,明显改善了生活品质和习惯。
光伏发电逆变器的分类及特点
光伏逆变器根据其功率等级、内部电路结构及应用场合不同,一般可分为集中型逆变器、组串型
通过串联形成组串,多个组串之间并联形成方阵,集中型将一个方阵的所有组串直流侧接入1台或2台逆变器,MPPT数量相对较少;组串型将一路或几路组串接入到一台逆变器,一个方阵中有多路MPPT,微型逆变器则对
逆变器组网方式可知,组串式方案中逆变器间无高频载波同步,根本无法解决逆变器间的并联环流问题。其次,在该方案中距离箱变远端的逆变器线路阻抗较大。再有,因组串式方案交流侧采用多机并联模式,造成多台逆变器在
。
组串式逆变器在大型地面电站中交流侧直接并联在一起,因主动保护采用注入失真信号的方式无法应用在多机并联系统中,故无法执行孤岛保护中的主动保护,存在应用风险,如产生谐振孤岛将会对线路检修人员造成安全威胁
效应简称光伏效应。4、光伏发电系统由哪些部件构成?光伏发电系统由光伏方阵(光伏方阵由光伏组件串并联而成)、控制器、蓄电池组、直流/交流逆变器等部分组成.光伏发电系统的核心部件是光伏组件,而光伏组件又是
由光伏电池串、并联并封装而成,它将太阳的光能直接转化为电能,光伏组件产生的电为直流电,我们可以利用也可以用逆变器将其转换成为交流电加以利用,从另一个角度来看对于光伏系统产生的电能可以即发即用,也可以用
被称为光生伏打效应简称光伏效应。4、光伏发电系统由哪些部件构成?光伏发电系统由光伏方阵(光伏方阵由光伏组件串并联而成)、控制器、蓄电池组、直流/交流逆变器等部分组成.光伏发电系统的核心部件是光伏组件
,而光伏组件又是由光伏电池串、并联并封装而成,它将太阳的光能直接转化为电能,光伏组件产生的电为直流电,我们可以利用也可以用逆变器将其转换成为交流电加以利用,从另一个角度来看对于光伏系统产生的电能可以即发
连接数
设计串接数目22块/串
每串功率5500W/串阵列功率110000W/阵
并联数目181串阵列数9阵
1500V系统组串连接数
设计串接数目33块/串
每串功率8250W/串阵列功率
165000W/阵
并联数目120串阵列数6阵
由此可见,1MW系统可减少使用61个组串,3个汇流箱,另直流电缆减少,另由于组串的减少,减少了安装和运维的人力成本,以此可见,1500V集中式及大型
。那么,就相当于在电网侧并联了一个可调电阻。此电阻对基波电流表现为阻抗无穷大,对检测的谐波电流表现为一定的电阻,改变电压检测通道的检测系数就相当于改变电阻的阻值。其等效电路如图14所示。
TSVG
的电能质量,提高了光伏电站和输电网络的系统稳定性.
谐振抑制:光伏电站背景谐波电压与输电线路参数匹配时会产生串联谐振造成严重的谐波电压放大;当光伏电站谐波电流与电网输电线路参数匹配时,会产生并联
,会产生并联谐振,造成谐波电流放大。图5. 光伏电站与电网基波等值电路光伏电站配网基波域数学模型为对称二端口网络,该模型为谐振模型的研究基础。图6 (a)谐波电压串联谐振等值电路 图6 (b